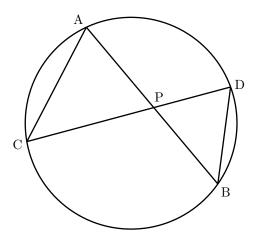
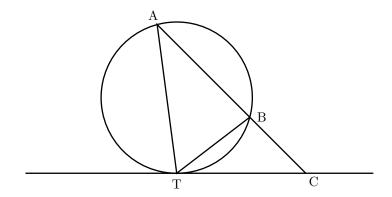
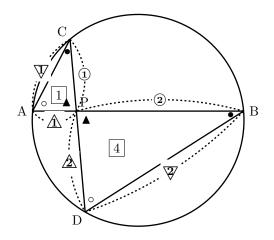


反射テスト 平面図形 円 面積比から相似比 01


- 1. わかる線分比を全て図にかきこめ. (S 級 50 秒, A 級 2 分, B 級 3 分 30 秒, C 級 5 分)
 - (1) $\triangle CAP : \triangle PDB = 1 : 4$.


(2) CT は円の接線であり、 $\triangle ABT : \triangle CBT = 3:1$.

- **2.** わかる線分比を全て図にかきこめ. (S 級 50 秒, A 級 2 分, B 級 3 分 30 秒, C 級 5 分)
 - (1) $\triangle ACP : \triangle PBD = 49 : 36$.



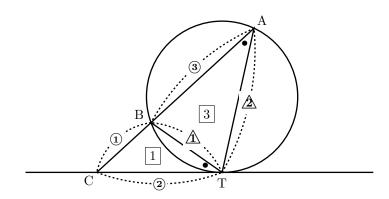
(2) CT は円の接線であり、 \triangle ATB: \triangle CTB = 5:4.

反射テスト 平面図形 円 面積比から相似比 01 解答解説

- 1. わかる線分比を全て図にかきこめ. (S級 50 秒, A級 2分, B級 3分 30 秒, C級 5分)
 - (1) $\triangle CAP : \triangle PDB = 1 : 4$.

★ 方べきの定理 PA×PB = PC×PD

 $\triangle PCA \sim \triangle PBD$


面積比 1:4 ⇒ 相似比 1:2 対応する辺に注意すれば、

PC: PB = ①: ② $PA: PD = \triangle : \triangle$ $CA: BD = \forall : \forall \forall$

☆注意

平行線によるバッテン相似とは対応する辺が違う.

(2) CT は円の接線であり、 $\triangle ABT : \triangle CBT = 3 : 1$.

★ 面積比と線分比

 $\triangle ABT : \triangle CBT = 3 : 1 \text{ b} \cdot \text{5},$

 $AB:BC= \ensuremath{\mathfrak{3}}: \ensuremath{\mathfrak{1}}$

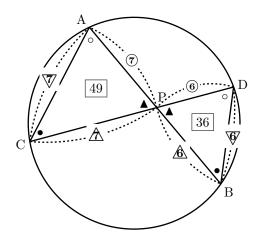
★ 方べきの定理 $CA \times CB = CT^2$ 接弦定理を用いて、二角相等から、

 $\triangle CTB \sim \triangle CAT$

面積比は 1:(1+3)=1:4

相似比は $\sqrt{1}:\sqrt{4}=1:2$

 \triangle CTB の BC の長さは(1).


相似で対応する辺を考えれば,

 \triangle CAT の TC の長さは ① $\times \frac{2}{1} = ②$

同様にして、 $\triangle {\rm CTB} \backsim \triangle {\rm CAT}$ の相似比 1 : 2 から、

対応する辺 TB: AT = Δ: Δ

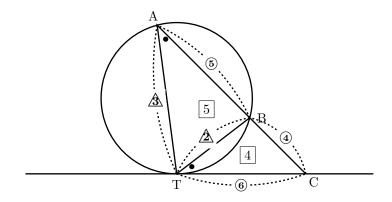
- 2. わかる線分比を全て図にかきこめ. (S級50秒, A級2分, B級3分30秒, C級5分)
 - (1) $\triangle ACP : \triangle PBD = 49 : 36$.

★ 方べきの定理 PA×PB = PC×PD

 $\triangle PAC \sim \triangle PDB$

面積比 49:36 ⇒ 相似比 7:6

対応する辺に注意すれば, PA: PD = ⑦: ⑥


 $PC: PB = \triangle : \triangle$

 $AC:DB = \overline{V}:\overline{V}$

☆注意

平行線によるバッテン相似とは対応する辺が違う.

(2) CT は円の接線であり、 $\triangle ATB : \triangle CTB = 5 : 4$.

★ 面積比と線分比

 $\triangle ATB : \triangle CTB = 5 : 4 \text{ bb},$

AB : BC = (5) : (4)

 \bigstar 方べきの定理 $CA \times CB = CT^2$

接弦定理を用いて, 二角相等から,

 $\triangle CTB \sim \triangle CAT$

面積比は 4:(4+5)=4:9

相似比は $\sqrt{4}:\sqrt{9}=2:3$

 \triangle CTB の BC の長さは4.

相似で対応する辺を考えれば、

 \triangle CAT の TC の長さは ④ × $\frac{3}{2}$ = ⑥

同様にして、 \triangle CTB \backsim \triangle CAT の相似比 2:3 から、

対応する辺 TB: AT = **②**: **③**