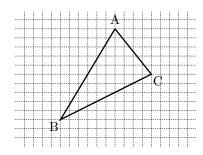
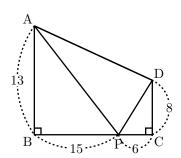
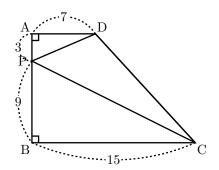
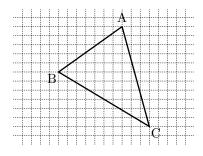

反射テスト 面積 三角形のたすき掛け公式 01

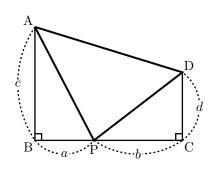

- 1. 次の三角形の面積を求めよ. (S級 40 秒, A級 1 分 30 秒, B級 3 分, C級 5 分)
 - (1) $\triangle APD$


(2) $\triangle ABP$


(3) △ABCただし、方眼紙の1マスの長さを1とする.


- 2. 次の三角形の面積を求めよ. (S級 40 秒, A級 1 分 30 秒, B級 3 分, C級 5 分)
 - (1) $\triangle APD$

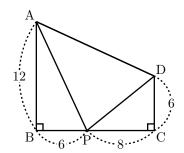
(2) $\triangle CDP$



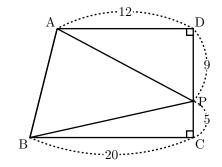
(3) △ABCただし、方眼紙の1マスの長さを1とする.

反射テスト 面積 三角形のたすき掛け公式 01 解答解説

1. 次の三角形の面積を求めよ. (S 級 40 秒, A 級 1 分 30 秒, B 級 3 分, C 級 5 分)


★ 三角形のたすき掛け公式…ななめ掛け (たすき掛け) の和÷2

$$\triangle {\rm APD} = \frac{ad + bc}{2}$$
 (= $\frac{a \times d + b \times c}{2}$ の意味)

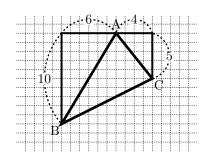

証明 $\triangle APD =$ 台形 $ABCD - (\triangle ABP + \triangle CDP)$ $= \frac{(c+d)(a+b)}{2} - \frac{ac}{2} - \frac{bd}{2}$ $= \frac{ac+bc+ad+bd-ac-bd}{2} = \frac{ad+bc}{2}$

☆この結果から、 \triangle APD = \triangle APC + \triangle DBP であることもわかる.

(1) $\triangle APD$

(2) △ABP

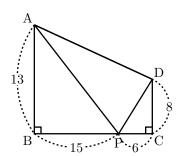
$$\triangle APD = \frac{6 \times 6 + 8 \times 12}{2}$$

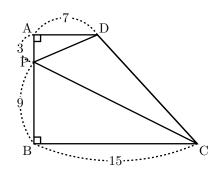

=66

 $\triangle ABP = \frac{5 \times 12 + 9 \times 20}{2}$

= 120

(3) $\triangle ABC$

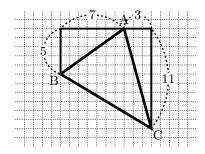

ただし、方眼紙の1マスの長さを1とする.


$$\triangle ABC = \frac{4\times 10 + 6\times 5}{2}$$

=35

- 2. 次の三角形の面積を求めよ. (S級 40 秒, A級 1 分 30 秒, B級 3 分, C級 5 分)
 - (1) $\triangle APD$

(2)
$$\triangle CDP$$


$$\triangle APD = \frac{15 \times 8 + 6 \times 13}{2}$$

= 99

$$\triangle CDP = \frac{3 \times 15 + 9 \times 7}{2}$$

= 54

(3) △ABCただし、方眼紙の1マスの長さを1とする.

$$\triangle ABC = \frac{3\times 5 + 7\times 11}{2}$$

= 46