反射テスト 平面図形 描画 入試問題 02

- **1.** ∠A = 45° の鋭角 △ABC がある. 点 A, B から対辺へ垂線を引き, その足をそれぞれ D, E, AD と BE との交点を F とするとき, 次の間に答えよ. (S級4分20秒, A級6分, B級9分, C級12分)
 - (1) △AFE と合同な三角形は何か答えよ.
 - (2) (1) を証明せよ.
 - BD = 3, DC = 2 であると, FD の長さを求めよ.

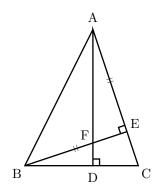
2. 中心 O,直径 AB の円 O がある. まず \widehat{AB} 上に $\widehat{AC}=\widehat{BC}$ となる点 C をとる. 次に,半直線 AC 上に D をとると,線 分 BD と \widehat{BC} が交わった. この交点を E,線分 AE と線分 BC との交点を F として,次の間に答えよ.

(S 級 4 分 20 秒, A 級 6 分, B 級 9 分, C 級 12 分)

- (1) $\triangle BDC$ と合同な三角形は何か答え、それを証明せよ.
- BE = 2, ED = 3 であると, FE の長さを求めよ.
- (3) AC,CD の長さをそれぞれ求めよ.
- (4) CE の長さを求めよ.

反射テスト 平面図形 描画 入試問題 02 解答解説

- 1. $\angle A=45^\circ$ の鋭角 $\triangle ABC$ がある. 点 A,B から対辺へ垂線を引き、その足をそれぞれ D,E、AD と BE との交点を F とするとき、次の間に答えよ. (S 級 4 分 20 秒、A 級 6 分、B 級 9 分、C 級 12 分)
 - (1) △AFE と合同な三角形は何か答えよ.
 - (2) (1) を証明せよ.
 - BD = 3, DC = 2 であると, FD の長さを求めよ.



★ わかることは全て書き込む

 \triangle ABE が直角二等辺三角形になることがわかれば、 EA = EB の等辺記号を書き込める.

★ 図形の基本は三角形

合同は必ず等辺を示唆する必要があるから、 EA,EBをそれぞれ1辺とする三角形を考える.

- (1) $\triangle \mathbf{BCE} \equiv \triangle \mathbf{AFE}$
- (2) \triangle BCE \land \triangle AFE について考える.

 \triangle ACD の内角の和から \angle ACB = $(90-a)^{\circ}$

 \triangle BCE の内角の和から \angle CBE = $180^{\circ} - \{90^{\circ} + (90 - a)^{\circ}\} = a^{\circ}$

よって、 $\angle CBE = \angle FAE$ …①

また仮定から、 $\angle BEC = \angle AEF = 90^{\circ}$ …①

仮定から $\angle BAE = 45^{\circ}$ なので、 $\angle EBA = 180^{\circ} - 90^{\circ} - 45^{\circ} = 45^{\circ}$.

つまり $\triangle EAB$ は直角二等辺三角形なので、EB = EA …③

以上から、二角夾辺相等より $\triangle BCE \equiv \triangle AEF$ である.

(3) ★ わかることは全て書き込む

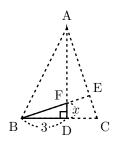
(2) から、AF = BC = BD + DC = 3 + 2 = 5

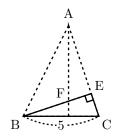
★ 図形の基本は三角形

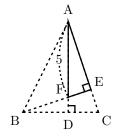
(2) から、 a° 、 $(90-a)^{\circ}$ 、 90° の直角三角形が 4 つあることがわかる.

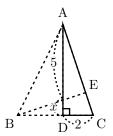
 $\triangle BFD \Leftrightarrow \triangle BCE \equiv \triangle AEF \Leftrightarrow \triangle ACD$

求めたい FD の長さをxとおくと、このうち二辺の長さが分かっているものは…









 $\triangle BFD \hookrightarrow \triangle ACD$ この 2 つの三角形は二辺の長さが分かっている. (x で表すことも含めて「分かっている」ということ) よって方程式を作ることができる.

 $BD: DF = AD: DC \Rightarrow 3: x = (5+x): 2 \Leftrightarrow x(5+x) = 6 \Leftrightarrow x^2 + 5x - 6 \Leftrightarrow (x+6)(x-1) = 0$

 $\Leftrightarrow x = -6, 1$

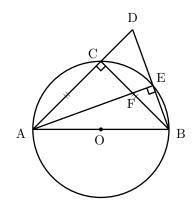
x>0 であるから, x=1

FD = 1

2. 中心 O,直径 AB の円 O がある. まず \widehat{AB} 上に $\widehat{AC} = \widehat{BC}$ となる点 C をとる. 次に,半直線 AC 上に D をとると,線分 BD と \widehat{BC} が交わった. この交点を E,線分 AE と線分 BC との交点を F として,次の間に答えよ.

(S 級 4 分 20 秒, A 級 6 分, B 級 9 分, C 級 12 分)

- (1) $\triangle BDC$ と合同な三角形は何か答え、それを証明せよ.
- BE = 2, ED = 3 であると, FE の長さを求めよ.
- (3) AC, CD の長さをそれぞれ求めよ.
- (4) CE の長さを求めよ.



★ わかることは全て書き込む

 \triangle ABE が直角二等辺三角形になることがわかれば、 EA = EB の等辺記号を書き込める.

★ 図形の基本は三角形

合同は必ず等辺を示唆する必要があるから、 EA, EB をそれぞれ1辺とする三角形を考える.

(1) $\triangle \mathbf{AFC} \equiv \triangle \mathbf{BDC}$

△AFC と △BDC について考える.

CE に円周角の定理を適用して、 ZFAC = ZDBC

半円の \overrightarrow{AB} に円周角の定理を適用して、 $\angle AEC = \angle ACB = 90^{\circ}$

仮定から $\widehat{CA} = \widehat{CB}$ なので、弦 $CA = \widehat{CB}$.

以上から、二角夾辺相等より $\triangle BCE \equiv \triangle AEF$ である.

- (2) (1) から、AF = BD = BE + ED = 2 + 3 = 5
- ★ 図形の基本は三角形 $\triangle BFE \hookrightarrow \triangle BDC \equiv \triangle AFC \hookrightarrow \triangle ADE$

求めたい FE の長さを x とおくと、このうち二辺の長さが分かっているものは、 $\triangle BFE \hookrightarrow \triangle ADE$.

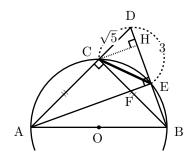
この 2 つの三角形は二辺の長さが分かっている. (x で表すことも含めて「分かっている」ということ)

BE: FE = AE: DE \Rightarrow 2: x = (5+x): 3 \Leftrightarrow x(5+x) = 6 \Leftrightarrow $x^2 + 5x - 6$ \Leftrightarrow (x+6)(x-1) = 0

- $\Leftrightarrow x = -6, 1$
- x>0 であるから, x=1
- FE = 1
- (3) $\triangle BFE$ に三平方の定理を適用して、 $BF = \sqrt{1^2 + 2^2} = \sqrt{5}$
 - (2) で上げた 4 つの三角形の三辺比は、 $1:2:\sqrt{5}$.

$$\triangle AFC$$
 から、 $AC = \frac{2}{\sqrt{5}}AF = \frac{2}{\sqrt{5}} \times 5 = 2\sqrt{5}$

$$\triangle BDC$$
 から、 $CD = \frac{1}{\sqrt{5}}AF = \frac{1}{\sqrt{5}} \times 5 = \sqrt{5}$



(4) Cから BD に垂線を下ろし、その足を H とする.

 \triangle CDH \bigcirc \triangle ADE であるから、この \triangle CDH の三辺比も 1:2: $\sqrt{5}$.

 $CD = \sqrt{5}$ であるから、CH = 2、DH = 1 \Rightarrow HE = 3 - 1 = 2

△CEH が直角二等辺三角形であることがわかるので、

$$CE = \frac{\sqrt{2}}{1}CH = 2\sqrt{2}$$