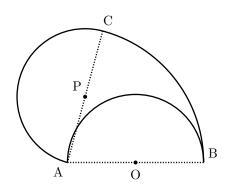
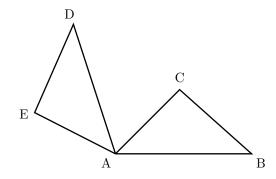
反射テスト 動図形 回転移動 応用 01

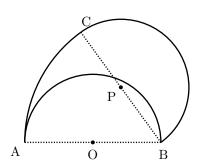
- 1. 円周率を 3.14 として、次の問に答えよ. (S 級 1 分 40 秒, A 級 3 分, B 級 5 分, C 級 7 分)
 - (1) 半円 O を, 点 A を中心にして, 反時計回りに 75° 動かしたら, 下図のようになった. $AB=6\,\mathrm{cm}$ として 半円の弧 AB が動いたあとの面積を求めよ.



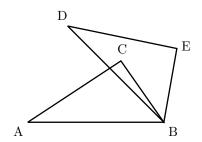
(2) \triangle ABC を,点 A を中心にして,反時計回りに 108° 動かしたら,下図の \triangle ADE になった. AB = 6 cm , AC = 4 cm として, \triangle ABC の辺 BC が動いたあとの面積を求めよ.



- **2.** 円周率を 3.14 として、次の問に答えよ. (S 級 2 分、A 級 3 分 20 秒、B 級 5 分、C 級 7 分)
 - (1) 半円 O を, 点 B を中心にして, 反時計回りに 54° 動かしたら, 下図のようになった. $AB=8\,\mathrm{cm}$ として 半円の弧 AB が動いたあとの面積を求めよ.

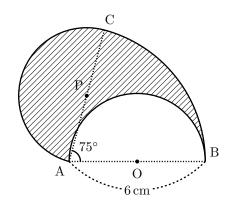


(2) \triangle ABC を,点 B を中心にして,時計回りに 45°動かしたら,下図の \triangle DBE になった. AB = 18 cm ,BC = 10 cm として, \triangle ABC の辺 CA が動いたあとの面積を求めよ.



反射テスト 動図形 回転移動 応用 01 解答解説

- 1. 円周率を 3.14 として, 次の問に答えよ. (S級 1 分 40 秒, A級 3 分, B級 5 分, C級 7 分)
 - (1) 半円 O を, 点 A を中心にして, 反時計回りに 75° 動かしたら, 下図のようになった. $AB = 6 \, \mathrm{cm}$ として 半円の弧 AB が動いたあとの面積を求めよ.



求める面積は左図の斜線部分になる.

- ★全体から白いところを引く.
- ★ 3.14 の計算は一番最後.
- ★ 式を書け!!!

斜線部の面積 = 扇形 ABC + 半円 P – 半円 O
$$\leftarrow$$

$$= 扇形 ABC$$

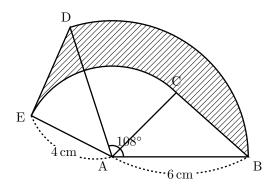
$$= 6 \times 6 \times 3.14 \times \frac{75}{360}$$

$$= \frac{15}{2} \times 3.14$$

$$= 7.5 \times 3.14 = 23.55 \text{ cm}^2$$

☆2つの半円は合同で,面積が等しく,相殺(そうさい)可能.

(2) \triangle ABC を,点 A を中心にして,反時計回りに 108° 動かしたら,下図の \triangle ADE になった. AB = 6 cm , AC = 4 cm として, \triangle ABC の辺 BC が動いたあとの面積を求めよ.



求める面積は左図の斜線部分になる.

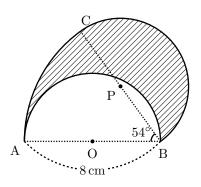
- ★全体から白いところを引く.
- ★ 3.14 の計算は一番最後.
- ★ 式を書け!!!

斜線部の面積

- = $(\overline{R} + \Delta + \Delta + \Delta)$ − $(\overline{R} + \Delta + \Delta)$ ← $\Delta + \Delta$
- = 扇形 ABD 扇形 ACE
- $= 6 \times 6 \times 3.14 \times \frac{108}{360} 4 \times 4 \times 3.14 \times \frac{108}{360}$
- $= (36 16) \times 3.14 \times \frac{3}{10}$
- $= 6 \times 3.14 = 18.84 \, \text{cm}^2$

☆2つの三角形は合同で、面積が等しく、相殺 (そうさい) 可能.

- 2. 円周率を 3.14 として, 次の問に答えよ. (S 級 2 分, A 級 3 分 20 秒, B 級 5 分, C 級 7 分)
 - (1) 半円 O を, 点 B を中心にして, 反時計回りに 54° 動かしたら, 下図のようになった. $AB = 8 \, \mathrm{cm}$ として 半円の弧 AB が動いたあとの面積を求めよ.



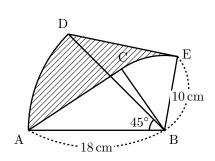
求める面積は左図の斜線部分になる.

- ★全体から白いところを引く.
- ★ 3.14 の計算は一番最後.
- ★ 式を書け!!!

斜線部の面積 = 扇形 ABC + 半円 P - 半円 O
$$\longleftrightarrow$$
= 扇形 ABC
= $8 \times 8 \times 3.14 \times \frac{54}{360}$
= $8 \times 8 \times 3.14 \times \frac{3}{20}$
= $\frac{48}{5} \times 3.14$
= $9.6 \times 3.14 = 30.144 \text{ cm}^2$

☆2つの半円は合同で、面積が等しく、相殺(そうさい)可能.

(2) \triangle ABC を,点 B を中心にして、時計回りに 45° 動かしたら、下図の \triangle DBE になった. AB = 18 cm ,BC = 10 cm として、 \triangle ABC の辺 CA が動いたあとの面積を求めよ.



求める面積は左図の斜線部分になる.

- ★全体から白いところを引く.
- ★ 3.14 の計算は一番最後.
- ★ 式を書け!!!

斜線部の面積

- = 扇形 BDA 扇形 BEC
- $= 18 \times 18 \times 3.14 \times \frac{45}{360} 10 \times 10 \times 3.14 \times \frac{45}{360}$
- $= (324 100) \times 3.14 \times \frac{1}{8}$
- $=224\times3.14\times\frac{1}{8}$
- $= 28 \times 3.14 = 87.92 \, \text{cm}^2$

☆2つの半円は合同で、面積が等しく、相殺(そうさい)可能.