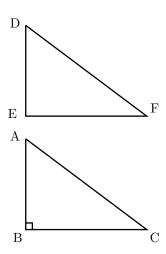
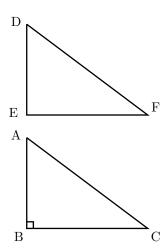
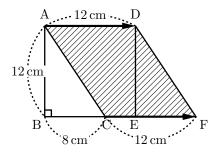

反射テスト 動図形 平行移動 基礎 01


- 1. 次の問に答えよ. (S 級 45 秒, A 級 1 分 30 秒, B 級 2 分 40 秒, C 級 4 分)
 - (1) 直角三角形 ABC がまっすぐ右へ $12\,\mathrm{cm}$ 平行移動して、 \triangle DEF になった. AB = $12\,\mathrm{cm}$ 、BC = $8\,\mathrm{cm}$ とする. 辺 CA が動いたあとの面積を求めよ.


(2) 直角三角形 ABC がまっすぐ右へ $12\,\mathrm{cm}$ 平行移動して、 \triangle DEF になった. AB = $12\,\mathrm{cm}$,BC = $8\,\mathrm{cm}$ とする. \triangle ABC が動いたあとの面積を求めよ.

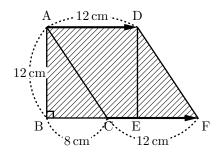
- 2. 次の問に答えよ. (S 級 45 秒, A 級 1 分 30 秒, B 級 2 分 40 秒, C 級 4 分)
 - (1) 直角三角形 ABC がまっすぐ上へ $15\,\mathrm{cm}$ 平行移動して、 \triangle DEF になった. AB = $12\,\mathrm{cm}$,BC = $16\,\mathrm{cm}$ とする. 辺 CA が動いたあとの面積を求めよ.



(2) 直角三角形 ABC がまっすぐ上へ $15\,\mathrm{cm}$ 平行移動して、 \triangle DEF になった. AB = $12\,\mathrm{cm}$ 、BC = $16\,\mathrm{cm}$ とする. \triangle ABC が動いたあとの面積を求めよ.

反射テスト 動図形 平行移動 基礎 01 解答解説

- 1. 次の問に答えよ. (S 級 45 秒, A 級 1 分 30 秒, B 級 2 分 40 秒, C 級 4 分)
 - 直角三角形 ABC がまっすぐ右へ $12\,cm$ 平行移動して、 \triangle DEF になった. $AB=12\,cm$ 、 $BC=8\,cm$ とする. 辺 CA が動いたあとの面積を求めよ.

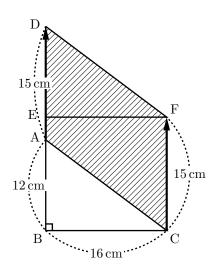

- ★ 動いたあとの「あと」は足あとの「あと」! 求める面積は, 左図の斜線部分 (平行四辺形 ACFD) になる.
- ★ わかっていることは図に書き込む!
- ★ 式を書け!!!

斜線部の面積 = 平行四辺形 ACFD

= 底辺 × 高さ

 $= 12 \times 12 = 144 \, \text{cm}^2$

(2) 直角三角形 ABC がまっすぐ右へ $12\,\mathrm{cm}$ 平行移動して, \triangle DEF になった. AB = $12\,\mathrm{cm}$, BC = $8\,\mathrm{cm}$ とする. \triangle ABC が動いたあとの面積を求めよ.

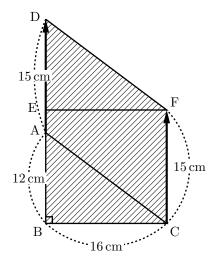

- ★ 動いたあとの「あと」は足あとの「あと」!求める面積は、左図の斜線部分(台形 ABFD)になる.
- ★ わかっていることは図に書き込む!
- ★ 式を書け!!!

斜線部の面積 = 台形 ABFD $= (上程 + 下底) \times 高さ \times \frac{1}{2}$ $= (12 + 20) \times 12 \times \frac{1}{2} = \mathbf{192 \, cm^2}$

☆別解

(1)
$$+\triangle$$
 ABC = $144 + 12 \times 8 \times \frac{1}{2} = 144 + 48 = 192 \text{ cm}^2$

- 次の問に答えよ. (S級 45 秒, A級 1 分 30 秒, B級 2 分 40 秒, C級 4 分) 2.
 - (1) 直角三角形 ABC がまっすぐ上へ $15\,\mathrm{cm}$ 平行移動して、 \triangle DEF になった. $AB = 12 \, \text{cm}$, $BC = 16 \, \text{cm}$ とする. 辺 CA が動いたあとの面積を求めよ.



- ★ 動いたあとの「あと」は足あとの「あと」! 求める面積は、左図の斜線部分 (平行四辺形 ACFD) になる.
- ★ わかっていることは図に書き込む!
- ★ 式を書け!!!

斜線部の面積 = 平行四辺形 ACFD = 底辺×高さ

 $= 15 \times 16 = 240 \, \mathrm{cm}^2$

直角三角形 ABC がまっすぐ上へ $15\,\mathrm{cm}$ 平行移動して、 \triangle DEF になった. $AB = 12 \, \mathrm{cm}$, $BC = 16 \, \mathrm{cm}$ とする. \triangle ABC が動いたあとの面積を求めよ.

- ★ 動いたあとの「あと」は足あとの「あと」! 求める面積は、左図の斜線部分(台形 ABFD)になる.
- ★ わかっていることは図に書き込む!
- ★ 式を書け!!!

斜線部の面積 = 台形 ABFD

$$\begin{split} &= (上程 + 下底) \times 高さ \times \frac{1}{2} \\ &= (15 + 27) \times 16 \times \frac{1}{2} = \textbf{336 cm²} \end{split}$$

$$= (15 + 27) \times 16 \times \frac{1}{2} = 336 \,\mathrm{cm}^2$$

☆別解

(1)
$$+\triangle$$
 ABC = $240 + 12 \times 16 \times \frac{1}{2} = 240 + 96 = 336 \text{ cm}^2$