反射テスト 積分 不定積分 三角関数 01

- 1. 次の不定積分を計算せよ. ただし積分定数は C を用いること. (S 級 1 分 30 秒, A 級 2 分 40 秒, B 級 4 分, C 級 6 分)
 - (1) $\int \sin x \, dx$

(2) $\int \cos x \, dx$

(3) $\int \sin 3x \, dx$

(4) $\int \cos 2x \, dx$

- $(5) \qquad \int \cos(5x-3)\,dx$
- (6) $\int \cos x \cos 2x \, dx$

(7) $\int \tan x \, dx$

- (8) $\int (1 + \tan^2 x) \, dx$
- $(9) \qquad \int \tan(4x-7)\,dx$

2.	次の不定積分を計算せよ.	ただし積分定数は	Cを用いること. ((S 級 3 分,	A級5分.	B級7分、	C級9分

$$(1) \qquad \int \sin\left(-x\right) dx$$

(2)
$$\int \cos 6x \, dx$$

(3)
$$\int \sin 7x \, dx$$

(4)
$$\int \sin\left(-2x\right) dx$$

$$(5) \qquad \int \sin 3x \sin 2x \, dx$$

(6)
$$\int \sin x \cos 3x \, dx$$

(7)
$$\int \tan 2x \, dx$$

(8)
$$\int \{1 + \tan^2(-x + 2)\} dx$$
 (9)
$$\int \tan(-5x - 2) dx$$

$$(9) \qquad \int \tan(-5x - 2) \, dx$$

反射テスト 積分 不定積分 三角関数 01 解答解説

1. 次の不定積分を計算せよ. ただし積分定数は C を用いること. (S 級 1 分 30 秒, A 級 2 分 40 秒, B 級 4 分, C 級 6 分)

☆この問題をする前に 2B 積分「1 次式の自然数乗の積分」をしっかりとできるようにしておくこと.

★三角関数の不定積分

$$\int \sin x \, dx = -\cos x + C \qquad \qquad \int \cos x \, dx = \sin x + C$$

$$\int \tan x \, dx = -\log|\cos x| + C \qquad \qquad \int \frac{1}{\cos^2 x} \, dx = \tan x + C$$

- igstar 「 m , n が定数 ($m \neq 0$) 」かつ「 f(x) の原始関数が F(x) である 」とき, $\int f(mx+n) \, dx = \frac{1}{m} F(mx+n) + C$ < 証明 > u = mx + n とおいて右辺を x について微分すると,(右辺)' = $\frac{d}{du} \{ \frac{1}{m} F(u) \} \cdot \frac{du}{dx} = \frac{1}{m} \cdot f(u) \cdot m = f(mx+n)$
- (1) $\int \sin x \, dx$ $= -\cos x + C \quad \cdots 答え$
- (3) $\int \sin 3x \, dx$ $= -\frac{1}{3} \cos 3x + C \quad$ …答え

☆すぐに微分して確かめる癖をつけよう

.

(4)
$$\int \cos 2x \, dx$$
$$= \frac{1}{2} \sin 2x + C \quad \text{…答え}$$

- (5) $\int \cos(5x-3) dx$ (6) $\int \cos x \cos 2x dx$ $= \frac{1}{5} \sin(5x-3) + C \quad \text{…答え}$ $= \frac{1}{2} \int \{\cos(x+2x)\}$
 - $= \frac{1}{2} \int \{\cos(x+2x) + \cos(x-2x)\} dx$ $= \frac{1}{2} \int \{\cos 3x + \cos(-x)\} dx$ $= \frac{1}{2} \int (\cos 3x + \cos x) dx$ $= \frac{1}{2} \left(\frac{1}{3} \sin 3x + \sin x\right) + C$ $= \frac{1}{6} \sin 3x + \frac{1}{2} \sin x + C \quad \text{wifi}$

☆積の公式

 $\cos \alpha \cos \beta$ $= \frac{1}{2} \left\{ \cos (\alpha + \beta) + \cos (\alpha - \beta) \right\}$

- $(7) \int \tan x \, dx$ $= -\log|\cos x| + C \quad$ …答え
- (9) $\int \tan(4x-7) dx$ $= -\frac{1}{4} \log|\cos(4x-7)| + C$...签文

次の不定積分を計算せよ. ただし積分定数はCを用いること. (S級3分, A級5分, B級7分, C級9分)

(1)
$$\int \sin(-x) dx$$
$$= \frac{1}{-1} \cdot \{-\cos(-x)\} + C$$
$$= \cos(-x) + C$$
$$= \cos x + C$$
 …答え

☆別解(「 – 」を最初に外へだす)
与式 =
$$-\int \sin x \, dx$$

= $\cos x + C$

$$\int an 2x \, dx$$

$$= rac{1}{2} \cdot (-\log|\cos 2x|) + C$$

$$= -rac{1}{2} \log|\cos 2x| + C \qquad$$
 …答え

$$\int \cos 6x \, dx$$

$$= \frac{1}{6} \sin 6x + C \quad$$
 …答え

$$(3)$$
 $\int \sin 7x \, dx$ $+C$ …答え $= \frac{1}{7} \cdot (-\cos 7x) + C$ $= -\frac{1}{7} \cos 7x + C$ …答え

$$\int \sin 3x \sin 2x \, dx$$

$$= -\frac{1}{2} \int \left\{ \cos (3x + 2x) - \cos (3x - 2x) \right\} \, dx$$

$$= -\frac{1}{2} \int \left\{ \cos (3x + 2x) - \cos (3x - 2x) \right\} \, dx$$

$$= -\frac{1}{2} \int \left\{ \sin (x + 3x) + \sin (x - 3x) \right\} \, dx$$

$$= -\frac{1}{2} \int \left\{ \sin 4x + \sin (-2x) \right\} \, dx$$

$$= -\frac{1}{2} \left(\frac{1}{5} \sin 5x - \sin x \right) + C$$

$$= \frac{1}{2} \int \left\{ \sin 4x - \sin 2x \right\} \, dx$$

$$= \frac{1}{2} \int \left\{ \sin 4x - \sin 2x \right\} \, dx$$

$$= \frac{1}{2} \left(-\frac{1}{4} \cos 4x + \frac{1}{2} \cos 2x \right) + C$$

$$\cdots 答え$$

$$= -\frac{1}{8} \cos 4x + \frac{1}{4} \cos 2x + C$$

☆積の公式
$$\sin \alpha \sin \beta$$

$$= -\frac{1}{2} \left\{ \cos (\alpha + \beta) - \cos (\alpha - \beta) \right\}$$

$$(8) \qquad \int \{1 + \tan^2(-x + 2)\} \, dx$$

$$= \int \frac{1}{\cos^2(-x+2)} \, dx$$

$$= \frac{1}{-1} \tan(-x+2) + C$$

$$= -\tan(-x+2) + C$$

$$= -\tan\{-(x-2)\} + C$$

$$= \tan(x-2) + C$$
 …答え

☆最初に「−」を前に出すと、
与式 =
$$\int [1 + \tan^2\{-(x-2)\}] dx$$

= $\int [1 + \{-\tan(x-2)\}^2] dx$
= $\int \{1 + \tan^2(x-2)\} dx$
= $\int \frac{1}{\cos^2(x-2)} dx$
= $\tan(x-2) + C$

$$\sin \alpha \cos \beta$$

$$= \frac{1}{2} \left\{ \sin (\alpha + \beta) + \sin (\alpha - \beta) \right\}$$
(9)
$$\int \tan(-5x - 2) dx$$

☆積の公式

$$\int \tan(-5x-2) dx$$

$$= \frac{1}{-5} \{-\log|\cos(-5x-2)|\} + C$$

$$= \frac{1}{5} \log|\cos\{-(5x+2)\}| + C$$

$$= \frac{1}{5} \log|\cos(5x+2)| + C$$
…答え

☆最初に「−」を前に出すと、
与式 =
$$\int \{-\tan(5x+2)\} dx$$

= $-\int \tan(5x+2) dx$
= $-\frac{1}{5} \{-\log|\cos(5x+2)|\} + C$
= $\frac{1}{5} \log|\cos(5x+2)| + C$