反射テスト 極限 数列 無限等比数列 03

- 1. 次の極限を求めよ. (S 級 35 秒, A 級 50 秒, B 級 1 分 10 秒, C 級 1 分 30 秒)
 - $(1) \qquad \lim_{n \to \infty} \left(\frac{4}{5}\right)^n$

 $(2) \qquad \lim_{n \to \infty} \ (-1)^n$

 $(3) \qquad \lim_{n \to \infty} \ (1)^n$

(4) $\lim_{n\to\infty} 4 \cdot \left(\frac{1}{4}\right)^n$

 $(5) \qquad \lim_{n \to \infty} \ \frac{2^n + 3^n}{3^n}$

(6) $\lim_{n \to \infty} \frac{5^n + 3^n}{3^n - 2^n}$

2	次の極限を求めよ.	(S 級 35 秒)	4級50秒	R級1分10秒	C級1分30秒
⊿.	グラ型成と かりょ・	(D //X JJ //2,	- A1 水X りひ ヤン・	, <i>D</i> //X I // IU //2,	

$$(1) \qquad \lim_{n \to \infty} \left(\frac{5}{\pi}\right)^n$$

$$(2) \qquad \lim_{n \to \infty} \left(-\frac{5}{7} \right)^n$$

$$(3) \qquad \lim_{n \to \infty} \ (-2)^n$$

(4)
$$\lim_{n \to \infty} 6 \cdot \left(-\frac{5}{6} \right)^n$$

(5)
$$\lim_{n \to \infty} \frac{4^n + 5^{n+1}}{5^n}$$

(6)
$$\lim_{n \to \infty} \frac{4^n + 3^n}{4^n - 2^n}$$

反射テスト 極限 数列 無限等比数列 01 解答解説

- 1. 次の極限を求めよ. (S 級 35 秒, A 級 50 秒, B 級 1 分 10 秒, C 級 1 分 30 秒)
 - \bigstar 初項 a , 公比 r の無限等比数列 a , ar , ar^2 , ar^3 , \cdots , ar^{n-1} , \cdots
 - igstar 無限等比数列 $\left\{r^n
 ight\}$ の極限 $\left\{egin{array}{ll} r>1 & ext{のとき} & \lim_{n o\infty} r^n=\infty \ r=1 & ext{のとき} & \lim_{n o\infty} r^n=1 \ |r|<1 & ext{のとき} & \lim_{n o\infty} r^n=0 \ r\leq 1 & ext{のとき} & \lim_{n o\infty} \left(ext{極限はない}
 ight) \end{array}
 ight.$
 - $(1) \qquad \lim_{n \to \infty} \left(\frac{4}{5}\right)^n$

 $(2) \qquad \lim_{n \to \infty} \ (-1)^r$

 $\left|\frac{4}{5}\right| < 1 \, \sharp \, \mathfrak{d}$

 $-1 \leq -1 \downarrow 0$

与式=0

振動

 $\lim_{n\to\infty} (1)^n$

(4) $\lim_{n\to\infty} 4 \cdot \left(\frac{1}{4}\right)^n$

与式 = 1

- $=4\lim_{n\to\infty}\ \left(\frac{1}{4}\right)^n$
- $\left|\frac{1}{4}\right| < 1 \, \sharp \, \mathfrak{h} \, ,$
- 与式 = $4 \cdot 0 = \mathbf{0}$

 $\lim_{n\to\infty} \frac{2^n + 3^n}{3^n}$

(6) $\lim_{n \to \infty} \frac{5^n + 3^n}{3^n - 2^n}$

 $=\lim_{n\to\infty} \left\{ \left(\frac{2}{3}\right)^n + 1 \right\} \leftarrow \stackrel{\wedge}{\approx}$

 $= \lim_{n \to \infty} \frac{\left(\frac{5}{3}\right)^n + 1}{1 - \left(\frac{2}{3}\right)^n} \quad \Longleftrightarrow$

= 0 + 1 = 1

- ~

 $☆分母分子を <math>3^n$ で割った.

☆分母分子を 3^n で割った.

次の極限を求めよ. (S 級 35 秒, A 級 50 秒, B 級 1 分 10 秒, C 級 1 分 30 秒)

(1)
$$\lim_{n \to \infty} \left(\frac{5}{\pi}\right)^n$$

$$\lim_{n \to \infty} \left(\frac{5}{\pi}\right)^n \tag{2} \qquad \lim_{n \to \infty} \left(-\frac{5}{7}\right)^n$$

$$\frac{5}{\pi} > 1 \, \sharp \, \mathfrak{h} \, ,$$

$$\left|-\frac{5}{7}\right|<1\ \ \sharp\ \mathfrak{h}\,,$$

与式
$$= \infty$$

与式
$$= 0$$

$$(3) \qquad \lim_{n \to \infty} \ (-2)^n$$

(4)
$$\lim_{n \to \infty} 6 \cdot \left(-\frac{5}{6}\right)^n$$

$$-2 < -1 \, \$$
 \$ \, b,

$$=6\lim_{n\to\infty} \left(-\frac{5}{6}\right)^n$$

振動

$$\left| -\frac{5}{6} \right| < 1 \, \, \sharp \, \, \mathfrak{h} \, ,$$

与式 =
$$6 \cdot 0 = \mathbf{0}$$

(5)
$$\lim_{n \to \infty} \frac{4^n + 5^{n+1}}{5^n}$$

(6)
$$\lim_{n \to \infty} \frac{4^n + 3^n}{4^n - 2^n}$$

$$= \lim_{n \to \infty} \left\{ \left(\frac{4}{5}\right)^n + 5 \right\} \quad \leftarrow \not \approx$$

$$= \lim_{n \to \infty} \frac{1 + \left(\frac{3}{4}\right)^n}{1 - \left(\frac{1}{2}\right)^n} \ \leftarrow \, \not \simeq \,$$

$$= 0 + 5 = 5$$

$$=$$
 $\frac{1+0}{1-0} = 1$

☆分母分子を 5^n で割った.

$$5^{n+1} = 5 \cdot 5^n$$