反射テスト 複素平面 証明 内角の二等分線と線分比 01

- 1. 複素平面上に \triangle OAB があり,OC が \angle AOB の二等分線となるように線分 AB 上に点 C をおく.O は原点,他の点は小文字 のアルファベットで複素数を表し,z の共役複素数を \overline{z} の形で表す.式変形において,0 で割る可能性 を言う必要はない. (S 級 7 分、A 級 12 分、B 級 18 分、C 級 25 分)

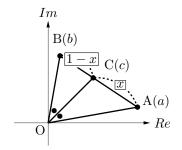
 - (1) 実数 x を用いて、AC: CB = x: (1-x) とおく. c を a,b,x で表せ. C は A,B と一致することはないものとする.
 - (2) (1) から, \bar{c} を \bar{a} , \bar{b} , x で表せ.
 - (3) 線分 OC が \angle AOB の二等分線という条件について、偏角 \arg を用いて a,b,c について等式を作れ.
 - (4) (3) の等式から絶対値を利用して変形すると, $\frac{c^2}{|c|^2} = \frac{}{}$ となる. を埋めよ.
 - (5) $|z|^2 = z\overline{z}$ であるから、(4) から絶対値 $|c|^2$ を消去すると、 $\frac{c}{|c|} = \frac{c}{|c|}$ となる. \overline{c} となる.
 - (6) (1), (2) を用いて, (5) から c, \bar{c} を消去し, x について解け.
 - (7) $\frac{x}{1-x}$ を a,b で表せ.

のアルファベットで複素数を表し、 z の共役複素数を \overline{z} の形 OA:OB = AC:BC を証明せよ.	(S級11分、A級16分、B級22分、C級30分)

反射テスト 複素平面 証明 内角の二等分線と線分比 01 解答解説

1. 複素平面上に $\triangle OAB$ があり、OC が $\angle AOB$ の二等分線となるように線分 AB 上に点 C をおく. O は原点、他の点は小文字 のアルファベットで複素数を表し、z の共役複素数をzの形で表す。式変形において、0 で割る可能性 を言う必要はない。

(S 級 7 分、 A 級 12 分、 B 級 18 分、 C 級 25 分)



(1) 実数 x を用いて、AC : CB = x : (1-x) とおく. c を a, b, x で表せ. C は A, B と一致することはないものとする.

 \star 内分点公式 複素平面の場合も同様である. c=(1-x)a+xb ただし 0< x<1

- (2) (1) から, \bar{c} を \bar{a} , \bar{b} , x で表せ.
 - (1) の両辺の共役複素数をとると、

$$\overline{c} = \overline{(1-x)a+xb}$$
 かつ $0 < x < 1$ \Leftrightarrow $\overline{c} = \overline{(1-x)}\overline{a} + \overline{x}\overline{b}$ かつ $0 < x < 1$ \Leftrightarrow $\overline{c} = (1-x)\overline{a} + x\overline{b}$ かつ $0 < x < 1$ \leftarrow \therefore x は実数であるから、 $\overline{x} = x$

(3) 線分 OC が \angle AOB の二等分線という条件について、偏角 \arg を用いて a,b,c について等式を作れ.

$$\angle AOC = \angle COB \quad \Leftrightarrow \quad \arg \frac{c}{a} = \arg \frac{b}{c}$$

(4) (3) の等式から絶対値を利用して変形すると、 $\frac{c^2}{|c|^2} = \frac{}{}$ となる. $$ を埋めよ.

$$\operatorname{arg} \frac{c}{a} = \operatorname{arg} \frac{b}{c} \quad \Leftrightarrow \quad \frac{c}{|c|} \cdot \frac{|a|}{a} = \frac{b}{|b|} \cdot \frac{|c|}{c} \quad \Leftrightarrow \quad \frac{c^2}{|c|^2} = \frac{ab}{|a||b|}$$

(5) $|z|^2 = z\overline{z}$ であるから、(4) から絶対値 $|c|^2$ を消去すると、 $\frac{c}{}$ = $\frac{c}{}$ となる. $\boxed{}$ を埋めよ

$$\frac{c^2}{|c|^2} = \frac{ab}{|a||b|} \quad \Leftrightarrow \quad \frac{c^2}{c\overline{c}} = \frac{ab}{|a||b|} \quad \Leftrightarrow \quad \frac{c}{\overline{c}} = \frac{ab}{|a||b|}$$

(6) (1), (2) を用いて, (5) から c, \bar{c} を消去し, x について解け.

$$\frac{c}{\overline{c}} = \frac{ab}{|a||b|} \quad \Leftrightarrow \quad |a||b|c = ab\overline{c}$$

$$\Rightarrow |a||b|\{(1-x)a+xb\} = ab\{(1-x)\overline{a}+x\overline{b}\} \quad \Leftrightarrow \quad \mathbf{x} = \frac{\mathbf{a}b\overline{a} - |\mathbf{a}||\mathbf{b}|\mathbf{a}}{|\mathbf{a}||\mathbf{b}|(\mathbf{b}-\mathbf{a}) - \mathbf{a}\mathbf{b}(\overline{\mathbf{b}} - \overline{\mathbf{a}})}$$

(7) $\frac{x}{1-x}$ を a,b で表せ.

(6) から
$$1-x = \frac{|a||b|b - ab\overline{b}}{|a||b|(b-a) - ab(\overline{b}-\overline{a})}$$

$$\therefore \frac{x}{1-x} = \frac{ab\overline{a} - |a||b|a}{|a||b|b - ab\overline{b}} = \frac{|a|^2b - |a||b|a}{|a||b|b - a|b|^2} = \frac{|a|(|a|b - |b|a)}{|b|(|a|b - |b|a)} = \frac{|a|}{|b|}$$

☆(6)別解 もっと簡単にできる. できた方は次のページ参照. できなかった方はそれを考えながら次のページの問題へ.

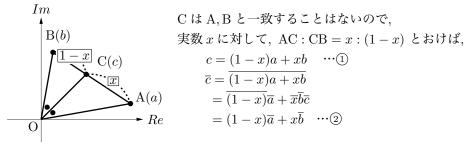
★ 内角の二等分線と線分比 の関係についての証明である.

 $\frac{|c-a|}{|c-b|}$ について考えると猥雑になるため、こんな証明方法になった.

☆0で割る可能性について言及していないので、証明として不完全である.

- 2. 複素平面上に \triangle OAB があり、OC が \angle AOB の二等分線となるように線分 AB 上に点 C をおく. O は原点、他の点は小文字のアルファベットで複素数を表し、z の共役複素数を \overline{z} の形で表す.
 - OA: OB = AC: BC を証明せよ.

(S級 11分、A級 16分、B級 22分、C級 30分)



線分 OC が \angle AOB の二等分線であり、A,B,C は原点 O と不一致だから、a,b,c ならびにその共役複素数、絶対値全て 0 ではない.

$$\angle AOC = \angle COB \quad \Leftrightarrow \quad \arg \frac{c}{a} = \arg \frac{b}{c}$$

$$\Leftrightarrow \quad \frac{c}{|c|} \cdot \frac{|a|}{a} = \frac{b}{|b|} \cdot \frac{|c|}{c}$$

$$\Leftrightarrow \quad \frac{c^2}{|c|^2} = \frac{ab}{|a||b|}$$

$$\Leftrightarrow \quad \frac{c}{\overline{c}} = \frac{ab}{|a||b|}$$

$$\Leftrightarrow \quad |a||b|c = ab\overline{c}$$

①, ②を代入して,

$$|a||b|\{(1-x)a+xb\} = ab\{(1-x)\overline{a}+x\overline{b}\}$$

$$\Leftrightarrow \{|a||b|(b-a) - ab(\overline{b} - \overline{a})\} x = |a|(|a|b - |b|a)$$

$$\Leftrightarrow (|a||b|b - |a||b|a - ab\overline{b} + ab\overline{a}) x = |a|(|a|b - |b|a)$$

$$\Leftrightarrow (|a||b|b - |a||b|a - |b|^2a + |a|^2b)x = |a|(|a|b - |b|a)$$

$$\Leftrightarrow \left(|a|^2 b - |a| |b| a + |a| |b| b - |b|^2 a \right) x = |a| (|a| b - |b| a)$$

$$\Leftrightarrow \ \{|a|(|a|b-|b|a)+|b|(|a|b-|b|a)\} \, x=|a|(|a|b-|b|a)$$

$$\Leftrightarrow$$
 $(|a| + |b|) (|a|b - |b|a) x = |a| (|a|b - |b|a) \cdots 3$

|a|b-|b|a=0 を仮定する. a,b,c ならびにその共役複素数, 絶対値全て 0 ではないから,

$$|a|b - |b|a = 0 \Leftrightarrow \frac{a}{b} = \frac{|a|}{|b|}$$

右辺が実数であるから、 $\frac{a}{b}$ も実数になるが、O,A,B は一直線に並ばないので矛盾である. $\leftarrow \bigcirc 1$ すなわち背理法から、 $|a|b-|b|a\neq 0$ …④

また題意から O, A, B は一致しないから, |a|, |b| も 0 ではない. つまり $|a| + |b| \neq 0$ …⑤

③、④、⑤から
$$x = \frac{|a|}{|a|+|b|}$$
 \Rightarrow $1-x = \frac{|b|}{|a|+|b|}$ (食実はここから $0 < x < 1$ がわかる) \therefore $x:(1-x)=|a|:|b|$ \Leftrightarrow OA:OB = AC:BC

☆1 ここのイメージがすぐ浮かばないのであれば、以下の反射テストをすべし.

複素平面 角度表現・複素平面 直線~平行垂直・複素平面 直線~2 点

☆総評 ★ 全てを考える. ★ 例外を愛せ・慈しめ.

0で割る可能性について言及するとこんな証明になる. x が約分できて非常にシンプルになることは、前ページではあえて言わなかったが、ここまで導ければ完璧である.

★ 内角の二等分線の長さ ①と x.(1 − x) の式から次の公式も得る. この公式も複素数での表記が美しい.

$$|c| = \frac{||b|a + |a|b|}{|a| + |b|}$$