反射テスト 複素平面 証明 三角不等式 01

1. あらゆる複素数 z に対して、 $\operatorname{Re} z \leq |z|$ を証明し、等号条件も求めたい. をうめよ. $\operatorname{Re} z$ は z = x + yi (i は虚数単位) のときの実部である実数 x を表す. また必要なら、z = x + yi の虚部である実数 y を表す $\operatorname{Im} z$ を使ってよい. (S 級 1 分 30 秒、A 級 2 分 20 秒、B 級 4 分、C 級 6 分)

証明

Re, |z|共に実数である.

 $\operatorname{Re} z < 0$ のとき、不等式の右辺は 以上であるから、不等式は成立. 等号を満たすことはない.

 $\operatorname{Re} z \ge 0$ のとき、両辺とも 以上であるから平方差で大小関係がわかる.

 $\operatorname{Re} z \le |z| \quad \Leftrightarrow \quad |z|^2 - \overline{(\operatorname{Re} z)^2} \ge 0$

$$|z|^{2} - (\operatorname{Re} z)^{2} = z \cdot \boxed{-\left(\frac{2}{2}\right)^{2}}$$

$$= -\frac{\left(\frac{2}{2}\right)^{2}}{4}$$

$$= \left(\frac{2}{2}\right)^{2}$$

$$= (\operatorname{Im} z)^{2} \ge 0$$

以上から、 $\operatorname{Re} z \ge 0$ のときも、 $\operatorname{Re} z \le |z|$

等号条件は、

 $\operatorname{Re} z \ge 0$ かつ $\operatorname{Im} z = 0$ \Leftrightarrow z が非負実数 (0 以上の実数)

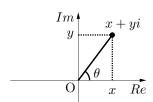
2.	あらゆる複素数 a,b に対して, $ a+b \le a + a $	証明し, 等号条件も求めたい. $igcup =$ をうめよ. 前ページの $\operatorname{Re} z \leq z $ は
	証明なしで使ってよい.	$(S $ 級 $3 $ 分、 \overline{A} 級 4 分 20 秒、 \overline{B} 級 6 分、 \overline{C} 級 8 分)

証明

 $z = a\bar{b}$ と考えれば、前ページの証明から、 $\operatorname{Re} z \leq |z|$ より、 $\operatorname{Re} (a\bar{b}) \leq |a\bar{b}| \quad \Leftrightarrow \quad |a\bar{b}| - \operatorname{Re} (a\bar{b}) \geq 0$ よって、①は 0 以上となり、題意は示された. 任意の複素数 a,b に対して、 $|a+b| \leq |a| + |b|$. 等号条件は前ページから、 $a\bar{b}$ が非負実数のとき.

反射テスト 複素平面 証明 三角不等式 01

あらゆる複素数 z に対して、 $\operatorname{Re} z \leq |z|$ を証明し、等号条件も求めたい. | をうめよ. $\operatorname{Re} z$ は z = x + yi (i は虚数単 位) のときの実部である実数 x を表す. また必要なら, z = x + yi の虚部である実数 y を表す $\operatorname{Im} z$ を使ってよい.



まずは知識事項. 左図におけるxが実部,yが虚部である.

複素数 z = x + yi (i は虚数単位, x, y は実数) が与えられれば, $\operatorname{Re} z = x$, $\operatorname{Im} z = y$ である.

★ 共役複素数 z = x + yi \Leftrightarrow $\overline{z} = x - yi$

よって次の公式が導かれる.
$$★$$
 実部 $\operatorname{Re} z = \frac{z + \overline{z}}{2}$ \bigstar 虚部 $\operatorname{Im} z = \frac{z - \overline{z}}{2i}$

$$\bigstar$$
 虚部 $\operatorname{Im} z = \frac{z-z}{2i}$

どんな複素数 z に対しても、 $\star z + \overline{z}$ は実数. $\star z - \overline{z}$ は純虚数.

$$\bigstar$$
 絶対値の公式 $|z|^2=z\overline{z}$

証明

Re, |z| 共に実数である.

 $\operatorname{Re} z < 0$ のとき、不等式の右辺は $\mid \mathbf{0} \mid$ 以上であるから、不等式は成立. 等号を満たすことはない.

 $\operatorname{Re} z \ge 0$ のとき、両辺とも $\boxed{\mathbf{0}}$ 以上の実数であるから平方差で大小関係がわかる.

$$\operatorname{Re} z \le |z| \quad \Leftrightarrow \quad |z|^2 - (\operatorname{Re} z)^2 \ge 0$$

$$|z|^{2} - (\operatorname{Re} z)^{2} = z \cdot \overline{z} - \left(\frac{\overline{z} + \overline{z}}{2}\right)^{2}$$

$$= z\overline{z} - \frac{z^{2} + 2z\overline{z} + \overline{z}^{2}}{4}$$

$$= -\frac{z^{2} - 2z\overline{z} + \overline{z}^{2}}{4}$$

$$= -\frac{\left(\overline{z} - \overline{z}\right)^{2}}{4} \qquad \cdots \text{1}$$

$$= \frac{(z - \overline{z})^{2}}{(2i)^{2}}$$

$$= \left(\frac{\overline{z} - \overline{z}}{2i}\right)^{2}$$

$$= (\operatorname{Im} z)^{2} \ge 0 \qquad \therefore \operatorname{Re} z \ge 0 \text{ O } \xi \not\cong \mathfrak{h}, \operatorname{Re} z \le |z|$$

等号条件は,

 $\operatorname{Re} z \ge 0$ かつ $\operatorname{Im} z = 0$ \Leftrightarrow z が非負実数 (0 以上の実数)

 $☆①をみて, 0以下と考えてはいけない. ★(<math>z - \overline{z}$) は純虚数である.

別解1 上の証明は実は回りくどい. z = x + yi を用いればとても簡単である. 途中だけ示す. $|z|^2 - (\operatorname{Re} z)^2 = x^2 + y^2 - x^2 = y^2 \ge 0$ (: y は実数)

別解 2 複素平面上で複素数 z を考える.

z が実軸、虚軸以外にある場合、斜辺|z|、他の二辺を $|\operatorname{Re} z|$ 、 $|\operatorname{Im} z|$ となる直角三角形を考えることができる。直角三角形の 斜辺は他の二辺より長いので、 $|\operatorname{Re} z| < |z|$. z が虚軸の部分 (ただし 0 を除く) や、実軸の負の部分にある場合、不等式は成立 z が実軸の 0 以上の部分にある場合、 $\operatorname{Re} z = |z|$. \Rightarrow 等号条件は、z が非負実数のとき.

© 数学・算数を楽しむために(http://www.enjoymath.sakura.ne.jp/index.html)

★ 複素数の三角不等式

任意の複素数 a, b に対して、 $|a+b| \le |a| + |b|$

証明

両辺が0以上であるから、平方差をとる.

有辺² - 左辺² =
$$(|a| + |b|)^2 - |a + b|^2$$

= $(|a|^2 + 2|a||b| + |b|^2) - (a + b)(\overline{a + b})$
= $(a\overline{a} + 2\sqrt{\overline{aabb}} + b\overline{b}) - (a\overline{a} + a\overline{b} + \overline{ab} + b\overline{b})$
= $2\sqrt{(\overline{ab})(\overline{ab})} - (\overline{ab} + \overline{ab})$
= $2(\overline{ab}) - (\overline{ab} + \overline{ab})$
= $2(\overline{ab}) - \overline{ab} + \overline{ab}$
= $2(\overline{ab}) - \overline{ab} + \overline{ab}$
= $2(\overline{ab}) - \overline{ab} + \overline{ab}$
= $2(\overline{ab}) - \overline{ab} + \overline{ab}$

 $z = a\bar{b}$ と考えれば、前ページの証明から、Re $z \le |z|$ より、

Re
$$(a\bar{b}) \leq |a\bar{b}| \Leftrightarrow |a\bar{b}| - \text{Re } (a\bar{b}) \geq 0$$

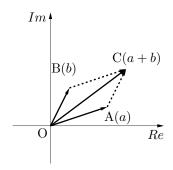
よって、①は 0 以上となり、題意は示された.

任意の複素数 a,b に対して、 $|a+b| \leq |a| + |b|$.

等号条件は前ページから、 $a\bar{b}$ が非負実数のとき.

☆複素平面は回転にも強い. この三角不等式を用いれば、★トレミーの不等式 などの証明にも力を発揮する.

別解



★ 複素数の三角不等式

任意の複素数 a, b に対して, $|a+b| \leq |a| + |b|$

複素平面上に A(a), B(b) を考えて, (a+b) を表す点 C を作る. 四角形 OACB は平行四辺形になり, AC = |b| である. \triangle OAC の三辺の長さが, |a|,|b|,|a+b| となり, 三角形の三角不等式と同値であることがわかる.