反射テスト 複素平面 領域 01

- 1. 次の式を満たすzの範囲を複素平面上に描け. zはzの共役複素数とし、Rezはzの実部を、Imzはzの虚部を表す。例えば、z=2+3i であれば、Rez=2 かつ Imz=3 である. (S 級 2 分 40 秒,A 級 3 分 40 秒,B 級 5 分,C 級 7 分)
 - (1) $\operatorname{Re} z > 1$

 $(2) \qquad \operatorname{Re}\frac{1}{z} > 0$

 $(3) \qquad |z|^2 \le 2$

 $(4) \qquad |z|^2 > \operatorname{Re} z$

- 2. 次の式を満たすzの範囲を複素平面上に描け. z はz の共役複素数とし、Re z はz の実部を、Im z はz の虚部を表す.例えば、z=2+3i であれば、Re z=2 かつ Im z=3 である. (S 級 3 分 30 秒,A 級 5 分,B 級 7 分,C 級 9 分)
 - $(1) \qquad \operatorname{Im} z \le 1$

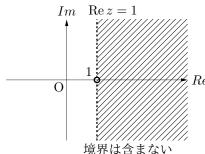
 $(2) \qquad \operatorname{Im} \frac{1}{z} > 0$

 $(3) \qquad |z|^2 \ge 20$

 $(4) \qquad |z|^2 < \operatorname{Im} z$

反射テスト 複素平面 領域 01 解答解説

1. 次の式を満たすzの範囲を複素平面上に描け. z はz の共役複素数とし、Re z は z の実部を、Im z は z の虚部を表す.例えば、z=2+3i であれば、Re z=2 かつ Im z=3 である. (S 級 2 分 40 秒,A 級 3 分 40 秒,B 級 5 分,C 級 7 分)



★ 複素数の公式 i は虚数単位, z = x + yi のとき,

①
$$x = \operatorname{Re} z = \frac{z + \overline{z}}{2}$$

$$2 \quad y = \operatorname{Im} z = \frac{z - \overline{z}}{2i}$$

- $(5) \quad \operatorname{Im} z = -\operatorname{Im} \overline{z}$

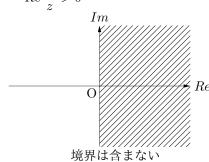
以上を利用して, (x,y) について考えれば, xy 座標平面上の領域として扱うことができる.

与不等式 \Leftrightarrow x > 1

★ 複素平面上の領域

複素数は大小関係がないから、基本的に素のままのzやzで不等式を表すことはできない。複素平面上の領域を表す場合、|z|、 $\arg z$ 、実部・虚部を表す $\operatorname{Re} z$ 、 $\operatorname{Im} z$ などの実数を用いて不等式を作る。

(2) Re
$$\frac{1}{x} > 0$$



$$z \neq 0$$
 かつ $z = x + yi$ \Leftrightarrow $\frac{1}{z} = \frac{x - yi}{x^2 + y^2}$

$$\therefore \quad \operatorname{Re} \frac{1}{z} > 0 \quad \Leftrightarrow \quad \operatorname{Re} \frac{x - yi}{x^2 + y^2} > 0$$

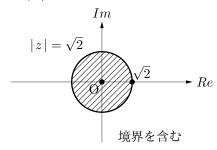
$$\Leftrightarrow \quad x > 0$$

☆別解

$$z \neq 0$$
 かつ $z = x + yi$ \Leftrightarrow $\frac{1}{z} = \frac{\overline{z}}{z\overline{z}}$

☆慣れると, x,y に換算せずに, z と \overline{z} のみで考えられる.

$(3) \qquad |z|^2 \le 2$

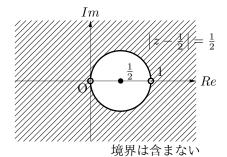


与式 \Leftrightarrow $x^2 + y^2 = \left(\sqrt{2}\right)^2$ これは、中心原点、半径 1 の円の内部である。

☆別解

igstar 円の方程式 |z|=r 与不等式 \Leftrightarrow $|z| \leq \sqrt{2}$

$(4) \qquad |z|^2 > \operatorname{Re} z$



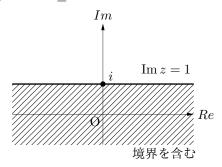
与不等式 \Leftrightarrow $x^2 + y^2 > x$ \Leftrightarrow $\left(x - \frac{1}{2}\right)^2 + y^2 > \left(\frac{1}{2}\right)^2$ これは、中心 $\frac{1}{2}$ 、半径 $\frac{1}{2}$ の円の外部である.

☆別解

与不等式 \Leftrightarrow $\left(z-\frac{1}{2}\right)\left(\overline{z}-\frac{1}{2}\right)>\left(\frac{1}{2}\right)^2$ \Leftrightarrow $\left|z-\frac{1}{2}\right|>\frac{1}{2}$

2. 次の式を満たすzの範囲を複素平面上に描け. \overline{z} はzの共役複素数とし、Re z はzの実部を、Im z はzの虚部を表す。例えば、z=2+3i であれば、Re z=2 かつ Im z=3 である. (S 級 3 分 30 秒、A 級 5 分、B 級 7 分、C 級 9 分)

(1) $\operatorname{Im} z \leq 1$



★ 複素数の公式 i は虚数単位, z = x + yi のとき,

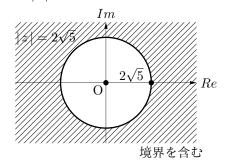
$$2 \quad y = \operatorname{Im} z = \frac{z - \overline{z}}{2i}$$

(3)
$$x^2 + y^2 = |z|^2 = z\overline{z}$$

以上を利用して, (x,y) について考えれば, xy 座標平面上の領域として扱うことができる.

与不等式 \Leftrightarrow $y \leq 1$

 $(3) \qquad |z|^2 \ge 20$



与式 \Leftrightarrow $x^2 + y^2 = (2\sqrt{5})^2$ これは、中心原点、半径 $2\sqrt{5}$ の円の外部である.

☆別解

 \bigstar 円の方程式 |z|=r 与式 \Leftrightarrow $|z| \ge 2\sqrt{5}$

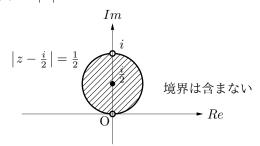
$$z \neq 0$$
 かつ $z = x + yi$ \Leftrightarrow $\frac{1}{z} = \frac{x - yi}{x^2 + y^2}$

$$\begin{array}{cccc} \therefore & & \operatorname{Im} \frac{1}{z} > 0 & \Leftrightarrow & & \operatorname{Im} \frac{x - yi}{x^2 + y^2} > 0 \\ & \Leftrightarrow & & -y > 0 & \Leftrightarrow & y < 0 \end{array}$$

☆別解

$$z \neq 0$$
 かつ $z = x + yi$ \Leftrightarrow $\frac{1}{z} = \frac{\overline{z}}{z\overline{z}}$

 $(4) \qquad |z|^2 < \operatorname{Im} z$



与不等式 \Leftrightarrow $x^2 + y^2 < y$ \Leftrightarrow $x^2 + \left(y - \frac{1}{2}\right)^2 < \left(\frac{1}{2}\right)^2$ これは、中心 $\frac{i}{2}$ 、半径 $\frac{1}{2}$ の円の内部である.

☆別解

与不等式
$$\Leftrightarrow$$
 $z\overline{z} < \frac{z-\overline{z}}{2i}$
 \Leftrightarrow $z\overline{z} - \frac{1}{2i}z + \frac{1}{2i}\overline{z} < 0$
 \Leftrightarrow $(z + \frac{1}{2i})(\overline{z} - \frac{1}{2i}) < -\frac{1}{4i^2}$
 \Leftrightarrow $(z + \frac{1}{2i})(\overline{z} + (\frac{1}{2i})) < \frac{1}{4}$
 \Leftrightarrow $(z + \frac{1}{2i})(z + \frac{1}{2i}) < \frac{1}{4}$
 \Leftrightarrow $|z + \frac{1}{2i}|^2 < (\frac{1}{2})^2$
 \Leftrightarrow $|z - \frac{i}{2}| < \frac{1}{2}$

☆注意 不等式で複素数を扱うとき、両辺をiで割ったりできないので式変形に気をつけること.