反射テスト 微分 三角関数 証明 01

2.	関数	f(x)	$=\cos x$	をxについて微	分したい.	証明を添え	て微分せよ	.(S級2分	, A級3分30秒,	B級5分,	C級7分)
					金数学	・算数を楽	しむために	(http://w	ww.enjoymath.sa	kurane in/	index.html

反射テスト 微分 三角関数 証明 01 解答解説

1. 関数 $f(x) = \sin x$ を x について微分したい. 証明を添えて微分せよ. (S 級 2 分, A 級 3 分 30 秒, B 級 5 分, C 級 7 分)

$$\bigstar$$
 公式 $(\sin x)' = \cos x$

 $=\cos x$ …答え

☆三角関数の極限の公式
$$\left\{\begin{array}{ll} \lim\limits_{x\to 0} \ \frac{\sin h}{h} = 1 \\ \\ \lim\limits_{x\to 0} \ \frac{1-\cos h}{h^2} = \frac{1}{2} \end{array}\right.$$

2. 関数 $f(x) = \cos x$ を x について微分したい. 証明を添えて微分せよ. (S 級 2 分, A 級 3 分 30 秒, B 級 5 分, C 級 7 分)

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \leftarrow$$
導関数の定義
$$= \lim_{h \to 0} \frac{\cos(x+h) - \cos x}{h}$$

$$= \lim_{h \to 0} \frac{\cos x \cos h - \sin x \sin h - \cos x}{h} \leftarrow$$
加法定理
$$= \lim_{h \to 0} \left\{ -\sin x \cdot \frac{\sin h}{h} + \frac{\cos x (\cos h - 1)}{h} \right\}$$

$$= \lim_{h \to 0} \left\{ -\sin x \cdot \frac{\sin h}{h} - \cos x \cdot \frac{1 - \cos h}{h^2} \cdot h \right\}$$

$$= -\sin x \cdot 1 - \cos x \cdot \frac{1}{2} \cdot 0 \leftarrow$$
 公三角関数の極限の公式
$$= -\sin x \quad \cdots 答え$$

$$\bigstar$$
 公式 $(\cos x)' = -\sin x$

☆三角関数の極限の公式
$$\left\{\begin{array}{ll} \lim\limits_{x\to 0}\ \frac{\sin h}{h}=1\\\\ \lim\limits_{x\to 0}\ \frac{1-\cos h}{h^2}=\frac{1}{2} \end{array}\right.$$

☆余談

 $\sin x$ と $\cos x$ の微分の相関関係から、それぞれ 4 階微分をすると元に戻ることがわかる. この循環性と、虚数単位の 4 乗 $i^4=1$ に注目したのがオイラーである.

 \bigstar オイラーの公式 $e^{i\theta} = \cos x + i \sin x$

これに $heta=\pi$ を代入すると、数学史上一番美しいと言われる $e^{\pi i}=-1$ という式が生まれる.