反射テスト 指数対数 置き換え 01

- 1. 次の問に答えよ. (S級1分45秒, A級3分30秒, B級6分, C級9分)
 - (1) $y = 2^x 4^x$ の最大値を求めよ.

(2) $y = (\log_2 x)^2 + \log_2 \frac{x^2}{8}$ の最小値を求めよ.

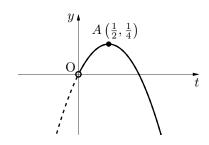
- 2. 次の問に答えよ. (S 級 2 分 10 秒, A 級 4 分, B 級 6 分 40 秒, C 級 10 分)
 - (1) $y = 2^x 4^{x-1}$ の最大値を求めよ.

(2) $y = (\log_2 x)^2 + \log_2 (9x)$ の最小値を求めよ.

反射テスト 指数対数 置き換え 01

次の問に答えよ. (S 級 1 分 45 秒, A 級 3 分 30 秒, B 級 6 分, C 級 9 分)

★ 指数関数の置き換え


計算式でも方程式でも $t=a^x$ と **置き換えて考える** と簡便になることは多い. 重要テクニックである. その際、定義域がt > 0となることに注意しよう.

★ 対数関数の置き換え

計算式でも方程式でも $t = \log_a x$ と **置き換えて考える** と簡便になることは多い. その際, x > 0 であり, t は実数全体 をとることに注意しよう.

(1) $y=2^x-4^x$ の最大値を求めよ.

$$t=2^x$$
 とおくと、 $t>0$
 $4^x=2^{2x}=(2^x)^2=t^2$ であるから、 $y=t-t^2$ ($t>0$)

$$y=-(t^2-t)=-\left(t-rac{1}{2}
ight)^2+rac{1}{4}$$

左図から $t>0$ のとき、点 A が y の最大値 $t=rac{1}{2}$ \Leftrightarrow $x=-1$
 \therefore $x=-1$ のとき 最大値 $y=rac{1}{4}$ をとる.

$$t = \frac{1}{2} \Leftrightarrow 2^x = \frac{1}{2} \Leftrightarrow x = -1$$

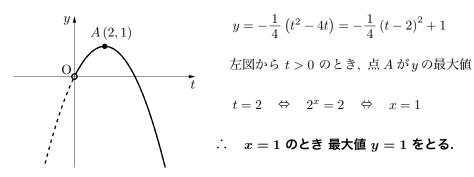
- (2) $y = (\log_2 x)^2 + \log_2 \frac{x^2}{8}$ の最小値を求めよ.

 \bigstar 真数条件より x>0 かつ $\frac{x^2}{8}>0$ ⇔ x>0 このとき, $t=\log_2 x$ とおくと,t は任意の実数である.

$$y = (\log_2 x)^2 + \log_2 x^2 - \log_2 8$$

= $(\log_2 x)^2 + 2\log_2 x - \log_2 2^3$
= $t^2 + 2t - 3$
= $(t+1)^2 - 4$

よって、t = -1 のとき、最小値 -4 をとる.


$$t = -1 \quad \Leftrightarrow \quad \log_2 x = -1 \quad \Leftrightarrow \quad \log_2 x = -\log_2 2 \quad \Leftrightarrow \quad x = 2^{-1} \quad \Leftrightarrow \quad x = \frac{1}{2}$$

 \therefore $x=rac{1}{2}$ のとき 最小値 y=-4 をとる.

- 次の問に答えよ. (S 級 2 分 10 秒, A 級 4 分, B 級 6 分 40 秒, C 級 10 分)
 - (1) $y = 2^x 4^{x-1}$ の最大値を求めよ.

$$t=2^x$$
 とおくと、 $t>0$

$$4^{x-1} = 4^x \cdot 4^{-1} = \frac{1}{4} \cdot 4^x = \frac{1}{4} \cdot 2^{2x} = \frac{1}{4} t^2$$
 であるから, $y = t - \frac{1}{4} t^2$ ($t > 0$)

$$y = -\frac{1}{4}(t^2 - 4t) = -\frac{1}{4}(t-2)^2 + 1$$

$$t=2 \Leftrightarrow 2^x=2 \Leftrightarrow x=1$$

$$\therefore$$
 $x=1$ のとき 最大値 $y=1$ をとる.

(2) $y = (\log_2 x)^2 + \log_2 (9x)$ の最小値を求めよ.

★真数条件より x > 0 かつ $9x > 0 \Leftrightarrow x > 0$ このとき、 $t = \log_2 x$ とおくと、t は任意の実数である.

$$y = (\log_2 x)^2 + \log_2 x + \log_2 9$$

$$= (\log_2 x)^2 + \log_2 x + \log_2 3^2$$

$$= t^2 + t + 2\log_2 3$$

$$= \left(t + \frac{1}{2}\right)^2 - \frac{1}{4} + 2\log_2 3$$

よって,
$$t = -\frac{1}{2}$$
 のとき,最小値 $-\frac{1}{4} + 2\log_2 3$ をとる.

$$t = -\frac{1}{2} \Leftrightarrow \log_2 x = -\frac{1}{2} \Leftrightarrow \log_2 x = -\frac{1}{2}\log_2 2 \Leftrightarrow x = 2^{-\frac{1}{2}} \Leftrightarrow x = \frac{1}{\sqrt{2}}$$

$$\therefore$$
 $x=rac{\sqrt{2}}{2}$ のとき 最小値 $y=-rac{1}{4}+2\log_23$ をとる.