反射テスト 数列 漸化式 特性方程式 01

1. 次の数列の一般項を求めよ. ただし $n=1,2,3,\cdots$ とする. (S級 1 分, A 級 1 分 40 秒, B 級 2 分 40 秒, C 級 4 分)

(1)
$$\begin{cases} a_1 = 3 \\ a_{n+1} = 2a_n - 2 \end{cases}$$

(2)
$$\begin{cases} a_1 = 1 \\ a_{n+1} = \frac{1}{3}a_n + 2 \end{cases}$$

(1)
$$\begin{cases} a_1 = 5 \\ a_{n+1} = 3a_n - 4 \end{cases}$$

(2)
$$\begin{cases} a_1 = 3 \\ a_{n+1} = \frac{1}{4}a_n + 3 \end{cases}$$

反射テスト 数列 漸化式 特性方程式 01 解答解説

 $oldsymbol{1}$. 次の数列の一般項を求めよ. ただし $n=1,2,3,\cdots$ とする.(S 級 1 分, A 級 1 分 40 秒, B 級 2 分 40 秒, C 級 4 分)

(1)
$$\begin{cases} a_1 = 3 & \cdots \\ a_{n+1} = 2a_n - 2 & \cdots \\ 2 & \cdots \end{cases}$$

数列 $\{a_n\}$ の特性方程式は, x=2x-2 \Leftrightarrow x=2

 \leftarrow 数列 $\{a_n-2\}$ は公比 2 の等比数列.

$$a_n - 2 = 2^{n-1}(a_1 - 2)$$

$$\Rightarrow a_n - 2 = 2^{n-1} \cdot (3-2)$$

← ①を代入

$$\Leftrightarrow \qquad a_n = 2^{n-1} + 2 \quad \ (n = 1, 2, 3, \cdots)$$

☆確かめ (★1,2,3,… で考える.)

n	1	2	3
a_n (漸化式)	3	$2 \cdot 3 - 2 = 4$	$2 \cdot 4 - 2 = 6$
$2^{n-1} + 2$	$2^{1-1} + 2 = 3$	$2^{2-1} + 2 = 4$	$2^{3-1} + 2 = 6$

(2)
$$\begin{cases} a_1 = 1 & \cdots \\ a_{n+1} = \frac{1}{3}a_n + 2 & \cdots \\ 2 & \cdots \end{cases}$$

数列 $\{a_n\}$ の特性方程式は, $x=\frac{1}{3}x+2$ \Leftrightarrow x=3

②
$$\Leftrightarrow$$
 $a_{n+1} - 3 = \frac{1}{3} \cdot (a_n - 3)$

 \leftarrow 数列 $\{a_n-3\}$ は公比 $rac{1}{3}$ の等比数列

$$\therefore a_n - 3 = \left(\frac{1}{3}\right)^{n-1} (a_1 - 3)$$

$$\Rightarrow a_n - 3 = \left(\frac{1}{3}\right)^{n-1} \cdot (1-3)$$

← ①を代入

$$\Leftrightarrow ~~a_n = -2 \cdot \left(rac{1}{3}
ight)^{n-1} + 3 ~~~(~n=1,2,3,\cdots)$$

☆確かめ (★1,2,3,… で考える.)

n	1	2	3
a_n (漸化式)	1	$\frac{1}{3} \cdot 1 + 2 = \frac{7}{3}$	$\frac{1}{3} \cdot \frac{7}{3} + 2 = \frac{25}{9}$
$\frac{-2}{3^{n-1}} + 3$	$\frac{-2}{3^{1-1}} + 3 = 1$	$\frac{-2}{3^{2-1}} + 3 = \frac{7}{3}$	$\frac{-2}{3^{3-1}} + 3 = \frac{25}{9}$

2. 次の数列の一般項を求めよ. ただし $n=1,2,3,\cdots$ とする. (S級1分, A級1分 40 秒, B級 2 分 40 秒, C 級 4 分)

(1)
$$\begin{cases} a_1 = 5 & \cdots \\ a_{n+1} = 3a_n - 4 & \cdots \\ 2 & \cdots \end{cases}$$

数列 $\{a_n\}$ の特性方程式は、 x=3x-4 \Leftrightarrow x=2

②
$$\Leftrightarrow$$
 $a_{n+1}-2=3\cdot(a_n-2)$ \leftarrow 数列 $\{a_n-2\}$ は公比 3 の等比数列

$$\therefore a_n - 2 = 3^{n-1}(a_1 - 2)$$

⇒
$$a_n - 2 = 3^{n-1} \cdot (5-2)$$
 ← ①を代入

$$\Leftrightarrow a_n = 3^n + 2 \quad (n = 1, 2, 3, \cdots)$$

☆確かめ (★1,2,3,··· で考えろ.)

n	1	2	3
a_n (漸化式)	5	$3 \cdot 5 - 4 = 11$	$3 \cdot 11 - 4 = 29$
$3^n + 2$	$3^1 + 2 = 5$	$3^2 + 2 = 11$	$3^3 + 2 = 29$

(2)
$$\begin{cases} a_1 = 3 & \cdots \\ a_{n+1} = \frac{1}{4}a_n + 3 & \cdots \\ 2 & \cdots \end{cases}$$

数列 $\{a_n\}$ の特性方程式は、 $x=\frac{1}{4}x+3$ \Leftrightarrow x=4

②
$$\Leftrightarrow$$
 $a_{n+1}-4=\frac{1}{4}\cdot(a_n-4)$ \leftarrow 数列 $\{a_n-4\}$ は公比 $\frac{1}{4}$ の等比数列

$$\therefore a_n - 4 = \left(\frac{1}{4}\right)^{n-1} (a_1 - 4)$$

$$\Rightarrow$$
 $a_n - 4 = \left(\frac{1}{4}\right)^{n-1} \cdot (3-4)$ ← ①を代入

$$\Leftrightarrow ~~a_n=-\left(rac{1}{4}
ight)^{n-1}+4~~~(~n=1,2,3,\cdots)$$

$$\Leftrightarrow \ a_n=-\frac{1}{4^{n-1}}+4 \quad \ (n=1,2,3,\cdots)$$

☆確かめ (★1,2,3,… で考えろ.)

n	1	2	3
a_n (漸化式)	3	$\frac{1}{4} \cdot 3 + 3 = \frac{15}{4}$	$\frac{1}{4} \cdot \frac{15}{4} + 3 = \frac{63}{16}$
$\frac{-1}{4^{n-1}} + 4$	$\frac{-1}{4^{1-1}} + 4 = 3$	$\frac{-1}{4^{2-1}} + 4 = \frac{15}{4}$	$\frac{-1}{4^{3-1}} + 4 = \frac{63}{16}$