反射テスト 三角比 正弦定理 01

- 1. \triangle ABC の外接円の半径を R とする. また, BC = a ,CA = b ,AB = c とする. 次の問いに答えよ. (S 級 1 分 30 秒,A 級 2 分,B 級 3 分,C 級 5 分)
 - (1) a=6 , $\angle A=90^{\circ}$ のとき、 R を求めよ.

(2) a=4 , $R=2\sqrt{2}$ のとぎ, ∠A を求めよ.

- (3) a=6 , $\angle A=120^\circ$, $\angle B=45^\circ$ のとき, bを求めよ.
- (4) $a=6\sqrt{2}$, $b=2\sqrt{6}$, $\angle B=30^{\circ}$ のとき、 $\angle A$ を求めよ.

- 2. \triangle ABC の外接円の半径を R とする. また, BC = a ,CA = b ,AB = c とする. 次の問いに答えよ. (S 級 1 分 30 秒,A 級 2 分,B 級 3 分,C 級 5 分)
 - (1) b=4, $\angle B=135^{\circ}$ のとき, Rを求めよ.

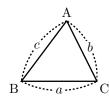
(2) $\angle C = 60^{\circ}, R = \sqrt{3}$ のとき, c を求めよ.

- (3) c=2 , $\angle A=45^\circ$, $\angle C=30^\circ \mathcal{O}$ とき, a を求めよ.
- (4) $b=3\sqrt{2}$, $c=2\sqrt{3}$, $\angle B=120^\circ \mathcal{O}$ とぎ、 $\angle C$ を求めよ.

反射テスト 三角比 正弦定理 01 解答解説

1. $\triangle ABC$ の外接円の半径を R とする. また、BC = a、CA = b、AB = c とする. 次の問いに答えよ.

(S級1分30秒, A級2分, B級3分, C級5分)



★ 正弦定理

 $rac{a}{\sin {
m A}} = rac{b}{\sin {
m B}} = rac{c}{\sin {
m C}} = 2R$ (R は \triangle ABC の外接円の半径である.)

☆この公式を使うときのイメージ

- 三角形の1辺と2角がわかれば,他の2辺を求めることが可能.
- 三角形の1辺とその対角がわかれば、外接円の半径を求めることが可能.
- 三角形の2辺とその夾角以外ではない1つの角がわかれば、他の2角と1辺を求めることが可能。
- 三角形は6つのパラメータから成る. つまり、3 辺と3つの角の数値合計6つが決まれば、そういう三角形は、この世に1種類しかないことになる. こういう状態を三角形が一意に決まるという.
 - 三角形が一意に決まるために、少なくともいくつのパラメータがわかればいいだろうか?
 - これは三角形の合同と深い関係がある.
 - (三辺相等 ⇔ 3つの辺の長さが全てわかれば,三角形は一意に決まる.

 - 2つの辺と、間ではない角が1つわかっても、三角形は一意に求められない。(2種類求めることはできる.)
 - 3つの角度がわかっても、相似形しかわからない. ゆえに、角度だけが3つわかっても、三角形は一意に決まらない.

(1) a=6 , $\angle A=90^{\circ}$ のとき, Rを求めよ.

★ 正弦定理 より

$$2R = \frac{a}{\sin A}$$

- $\Leftrightarrow \quad R = \frac{a}{2\sin A}$
- $\therefore R = \frac{6}{2\sin 90^{\circ}}$
- \Leftrightarrow R=3 …答え

(2) a=4, $R=2\sqrt{2}$ のとき, ∠A を求めよ.

★ 正弦定理 より

$$2R = \frac{a}{\sin A}$$

$$\Leftrightarrow \sin A = \frac{a}{2R}$$

$$\therefore \sin A = \frac{4}{2 \cdot 2\sqrt{2}}$$

$$\Leftrightarrow$$
 $\sin A = \frac{1}{\sqrt{2}}$

$$0^{\circ} < A < 180^{\circ}$$
 より $A = 45^{\circ}, 135^{\circ}$ …答え

☆2つの可能性があることに注意.

(3) a=6 , $\angle A=120^\circ$, $\angle B=45^\circ$ のとき, b を求めよ.

★ 正弦定理 より

$$\frac{a}{\sin A} = \frac{b}{\sin B}$$

- $\Leftrightarrow b = \frac{a \sin B}{\sin A}$
- $\therefore b = \frac{6\sin 45^{\circ}}{\sin 120^{\circ}}$
- \Leftrightarrow $b=2\sqrt{6}$ …答え

(4) $a=6\sqrt{2}\;,\;\;b=2\sqrt{6}\;,\;\angle {\rm B}=30^\circ {\it O}$ とき、 $\angle {\rm A}$ を求めよ.

★ 正弦定理 より

$$\frac{a}{\sin A} = \frac{b}{\sin B}$$

$$\therefore \quad \frac{6\sqrt{2}}{\sin A} = \frac{2\sqrt{6}}{\sin 30^{\circ}}$$

$$\Leftrightarrow \sin A = \frac{\sqrt{3}}{2}$$

 $0^{\circ} < A < 180^{\circ}$ より $A = 60^{\circ}$, 120° …答え

2. \triangle ABC の外接円の半径を R とする. また, BC = a,CA = b,AB = c とする. 次の問いに答えよ.

(S級1分30秒, A級2分, B級3分, C級5分)

(1) b=4, $\angle B=135$ °のとき, Rを求めよ.

$$2R = \frac{b}{\sin B}$$

$$\Leftrightarrow \quad R = \frac{b}{2\sin B}$$

$$\therefore \quad R = \frac{4}{2\sin 135^{\circ}}$$

$$\Leftrightarrow$$
 $R=2\sqrt{2}$ …答え

(2) $\angle C = 60^{\circ}$, $R = \sqrt{3}$ のとき, c を求めよ.

★ 正弦定理 より

$$\frac{c}{\sin C} = 2R$$

$$\Leftrightarrow$$
 $c = 2R \sin C$

$$\therefore$$
 $c=2\cdot\sqrt{3}\cdot\frac{\sqrt{3}}{2}$

$$\Leftrightarrow$$
 $c=3$ …答え

(3) c=2 , $\angle {\rm A}=45^{\circ}$, $\angle {\rm C}=30^{\circ}$ のとき, aを求めよ.

★ 正弦定理 より

$$\frac{a}{\sin A} = \frac{c}{\sin C}$$

$$\Leftrightarrow \quad a = \frac{c \sin A}{\sin C}$$

$$\therefore \quad a = \frac{2 \cdot \frac{1}{\sqrt{2}}}{\frac{1}{2}}$$

$$\Leftrightarrow$$
 $a=2\sqrt{2}$ …答え

(4) $b=3\sqrt{2}$, $c=2\sqrt{3}$, $\angle B=120^{\circ}$ のとき, $\angle C$ を求めよ.

★ 正弦定理 より

$$\frac{b}{\sin B} = \frac{c}{\sin C}$$

$$\therefore \quad \frac{3\sqrt{2}}{\sin 120^{\circ}} = \frac{2\sqrt{3}}{\sin C}$$

$$\Leftrightarrow$$
 $\sin C = \frac{1}{\sqrt{2}}$

$$0^{\circ} < C < 60^{\circ}$$
より $C = 45^{\circ}$ …答え

$$☆$$
∠B = 120°であるから 0 ° < C < 60 °