反射テスト 三角比 正接の補算 01

- 1. $0^{\circ} \le \theta \le 180^{\circ}$ として, 次の問いに答えよ. (S 級 50 秒, A 級 1 分 45 秒, B 級 3 分, C 級 5 分)
 - (1) $\cos \theta = \frac{4}{5}$ であるとき, $\tan \theta$ を求めよ.

(2) $\sin \theta = \frac{\sqrt{6}}{4}$ であるとき, $\tan \theta$ を求めよ.

- **2.** $0^{\circ} \le \theta \le 180^{\circ}$ として、次の問いに答えよ. (S 級 50 秒, A 級 1 分 45 秒, B 級 3 分, C 級 5 分)
 - (1) $\cos \theta = -\frac{\sqrt{3}}{3}$ であるとき, $\tan \theta$ を求めよ.

(2) $\sin \theta = \frac{\sqrt{5}}{3}$ であるとき, $\tan \theta$ を求めよ.

反射テスト 三角比 正接の補算 01 解答解説

- $0^{\circ} \le \theta \le 180^{\circ}$ として, 次の問いに答えよ. (S 級 50 秒, A 級 1 分 45 秒, B 級 3 分, C 級 5 分)
 - $\bigstar \tan^2 \theta + 1 = \frac{1}{\cos^2 \theta} \succeq \tan \theta = \frac{\sin \theta}{\cos \theta}$

 $\sin^2 \theta + \cos^2 \theta = 1$ の両辺を $\cos^2 \theta$ で割ると、この式を求めることができる.

この式を使えば、cos から、tan を求めることができる.

条件があるときは、以下に注意する.

$$\begin{cases} 0^{\circ} < \theta < 90^{\circ} \Rightarrow \tan \theta > 0 \\ 90^{\circ} < \theta < 180^{\circ} \Rightarrow \tan \theta < 0 \end{cases}$$

もしくは、 $\sin^2\theta + \cos^2\theta = 1$ を使って、 \sin と \cos の両方を求めて、 $\tan\theta = \frac{\sin\theta}{\cos\theta}$ より、 \tan を求めてもよい。 (最初から sin と cos の両方がわかっている場合や, sin のみわかっている場合は,こちらを用いたほうが計算が早い.)

 $\cos \theta = \frac{4}{5}$ であるとき, $\tan \theta$ を求めよ.

 $0^{\circ}< heta<90^{\circ}$ から, an heta>0 であるから, $an heta=rac{3}{4}$

$$\tan \theta = \frac{3}{4}$$

 $\sin \theta = \frac{\sqrt{6}}{4}$ であるとき, $\tan \theta$ を求めよ. (2)

 $0^{\circ} \le \theta \le 180^{\circ}$ かつ $0 < \sin \theta < 1$ より, $0^{\circ} < \theta < 180^{\circ}$.

$$\sin^2 \theta + \cos^2 \theta = 1$$

$$\Rightarrow \left(\frac{\sqrt{6}}{4}\right)^2 + \cos^2 \theta = 1$$

$$\Leftrightarrow \frac{6}{16} + \cos^2 \theta = 1$$

$$\Leftrightarrow \cos^2 \theta = 1 - \frac{6}{16}$$

$$\Leftrightarrow \cos^2 \theta = \frac{10}{16}$$

$$\Leftrightarrow \cos \theta = \pm \frac{\sqrt{10}}{4}$$

 $0^{\circ} < \theta < 180^{\circ}$ より, $\cos \theta$ は正負どちらもありえる.

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$= \frac{\frac{\sqrt{6}}{\sqrt{6}}}{\pm \frac{\sqrt{10}}{4}}$$

$$= \pm \frac{\sqrt{6}}{\sqrt{10}} \qquad \leftarrow 分母分子 \times 4$$

$$= \pm \frac{\sqrt{15}}{5}$$

- $0^{\circ} \le \theta \le 180^{\circ}$ として, 次の問いに答えよ. (S 級 50 秒, A 級 1 分 45 秒, B 級 3 分, C 級 5 分)
 - $\cos \theta = -\frac{\sqrt{3}}{3}$ であるとき, $\tan \theta$ を求めよ.

$$0^{\circ} \le \theta \le 180^{\circ}$$
 かつ $-1 < \cos \theta < 0$ より, $90^{\circ} < \theta < 180^{\circ}$.

$$0^{\circ} \leq \theta \leq 180^{\circ} \quad \text{fig. } -1 < \cos \theta < 0 \quad \text{f. f. } 90^{\circ} < \theta < 1$$

$$\tan^{2} \theta + 1 = \frac{1}{\cos^{2} \theta}$$

$$\Rightarrow \tan^{2} \theta + 1 = \frac{1}{\left(-\frac{\sqrt{3}}{3}\right)^{2}}$$

$$\Leftrightarrow \tan^{2} \theta = \left(\frac{3}{\sqrt{3}}\right)^{2} - 1 \quad \leftarrow \stackrel{\sim}{\pi} \frac{1}{\frac{b}{a}} = 1 \div \frac{b}{a} = \frac{a}{b}$$

$$\Leftrightarrow \tan^2 \theta = \left(\frac{3}{\sqrt{3}}\right)^2 - 1 \qquad \leftarrow \cancel{x} \cdot \frac{1}{\underline{b}} = 1 \div \frac{b}{a} = \frac{a}{b}$$

$$\Leftrightarrow \tan^2 \theta = \frac{9}{3} - 1$$

$$\Leftrightarrow \tan^2 \theta = 2$$

$$90^{\circ} < \theta < 180^{\circ}$$
 から, $\tan \theta < 0$ であるから,

$$\tan \theta = -\sqrt{2}$$

(2)
$$\sin \theta = \frac{\sqrt{5}}{3}$$
 であるとき, $\tan \theta$ を求めよ.

$$0^{\circ} \le \theta \le 180^{\circ}$$
 かつ $0 < \sin \theta < 1$ より, $0^{\circ} < \theta < 180^{\circ}$.

$$\sin^2\theta + \cos^2\theta = 1$$

$$\sin^2 \theta + \cos^2 \theta = 1$$

$$\Rightarrow \left(\frac{\sqrt{5}}{3}\right)^2 + \cos^2 \theta = 1$$

$$\Leftrightarrow \frac{5}{9} + \cos^2 \theta = 1$$

$$\Leftrightarrow \quad \frac{5}{9} + \cos^2 \theta = 1$$

$$\Leftrightarrow \cos^2 \theta = 1 - \frac{5}{9}$$

$$\Leftrightarrow \cos^2 \theta = \frac{4}{9}$$

$$\Leftrightarrow \cos^2 \theta = 1 - \frac{5}{9}$$

$$\Leftrightarrow \cos^2 \theta = \frac{4}{9}$$

$$\Leftrightarrow \cos \theta = \pm \frac{2}{3}$$

$$0^{\circ} < \theta < 180^{\circ}$$
 より, $\cos \theta$ は正負どちらもありえる.

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$= \frac{\frac{\sqrt{5}}{3}}{\pm \frac{2}{3}}$$

$$= \pm \frac{\sqrt{5}}{2} \quad \leftarrow 分母分子 \times 3$$