	反射	テスト	文字式	証明	数論	0801	
1.		をうめよ	<.(S 級 45)	秒, A級1	分15秒,	B級2分,	C級3分)
	(1)	2つの偶数	女の和は偶数	であること	: を証明す	る.	
	2	つの偶数を	$\frac{1}{2}$, $2m$,	とお	く(ただし	し m,n は整	数)
	٢	れらの和は	2m +	=2	() …①	
	m	,, n は整数で	であるから,		は整数で	あり, ①はイ	禺数である.
	ょ	って, 2つ	の偶数の和は	は偶数であ	る.		

(2) 連続した3つの整数の和は3の倍数であることを証明する.

連続する 3 つの整数を、n-1 、n 、 とおく (n は整数) これらの和は n-1+n+ = これらの和は n は 3 の倍数である.

よって、連続した3つの整数の和は3の倍数である.

2つの奇数を、 $2m+1$ 、 とおく(ただし m,n は整数)
これらの和は $2m+1+$ $=2($ $)$ …①
m,nは整数であるから、 は整数であり、 ①は偶数である.
よって、2つの奇数の和は偶数である.
(2) 連続した2つの奇数の和は4の倍数であることを証明する.
連続する 2 つの奇数を、 $2n-1$ 、 とおく $(n$ は整数)
これらの和は $2n-1+$ $=$ $=$
nは整数であるから、 は 4 の倍数である.
よって、連続した2つの奇数の和は4の倍数である.

] をうめよ.(S級 45 秒, A級1分 15 秒, B級2分, C級3分)

2つの奇数の和は偶数であることを証明する.

(1)

反射テスト 文字式 証明 数論 0801 解答解説

- 1. をうめよ. (S 級 45 秒, A 級 1 分 15 秒, B 級 2 分, C 級 3 分)
 - (1) 2つの偶数の和は偶数であることを証明する.

2つの偶数を、2m、2m とおく(ただしm,nは整数) $\leftarrow 2$ つの偶数

これらの和は 2m + 2n = 2(m+n) …①

m, n は整数であるから、m+n は整数であり、①は偶数である.

よって、2つの偶数の和は偶数である.

☆2つの偶数 まったく関連のない2つの偶数であるから、2つ文字が必要になる.

(2) 連続した3つの整数の和は3の倍数であることを証明する.

連続する3つの整数を, n-1, n, n+1 とおく(nは整数) $\leftarrow \Diamond$ 連続する整数

これらの和は n-1+n+ n+1 = 3n

n は整数であるから、 $\boxed{3n}$ は3の倍数である.

よって、連続した3つの整数の和は3の倍数である.

☆連続する整数 真ん中の整数を文字でおくとよい.

2.	かうめ	(S級 45 秒	A級1分15秒,	R級9分	C級3分)
4.	1と ノツム・	し ひ 水込 生ひ 12 、	A NX 1 11 10 17 .	$D \bowtie \Delta D$	

(1) 2つの奇数の和は偶数であることを証明する.

2つの奇数を、2m+1、2n+1 とおく(ただしm,nは整数) \longleftrightarrow 2つの奇数

これらの和は 2m+1+ $\boxed{2n+1}$ =2($\boxed{m+n+1}$) …①

m,n は整数であるから、m+n+1 は整数であり、①は偶数である.

よって、2つの奇数の和は偶数である.

☆ 2 つの奇数 まったく関連のない 2 つの偶数であるから、2 つ文字が必要になる. この場合、2m+1 と 2n-1 とおいてもよい. その場合①は 2(m+n) となる.

(2) 連続した2つの奇数の和は4の倍数であることを証明する.

これらの和は 2n-1+ $\boxed{2n+1}$ = $\boxed{4n}$

n は整数であるから、 $\boxed{4n}$ は 4 の倍数である.

よって、連続した2つの奇数の和は4の倍数である.

☆連続する奇数 \cdots , 2n-3, 2n-1, 2n+1, 2n+3, \cdots