反射テスト 場合の数・確率 図形との複合問題 01

1. 4本の竹ひごがあって, 長さは短い順に $2\,\mathrm{cm}$, $3\,\mathrm{cm}$, $4\,\mathrm{cm}$, $5\,\mathrm{cm}$ である. $4\,\mathrm{x}$ の竹ひごから $3\,\mathrm{x}$ 選び, それら $3\,\mathrm{x}$ 辺とする三角形を作る場合, 何通りできるか. ($S\,\mathrm{k}0\,\mathrm$

2. 円周を6点が等分する. これら6点から3点選んで三角形を作る. 合同なものは1種類として考える場合, 三角形は何種類できるか.

 $(S \& 30 \land \emptyset, A \& 1 \land \emptyset, B \& 2 \land \emptyset, C \& 3 \land \emptyset)$

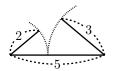
3.			ごから3本選び, それ B級2分 40 秒, <i>C</i>	
4.	円周を 8 点が等分する. これら 8 点から 3 点選んで三角形を作合同なものは 1 種類として考える場合,三角形は何種類できるか	50 秒, A級1分	30 秒, <i>B</i> 級 3 分, <i>C</i>	'級4分)

反射テスト 場合の数・確率 図形との複合問題 01 解答解説

4本の竹ひごがあって、長さは短い順に2 cm,3 cm,4 cm,5 cm である。4本の竹ひごから3本選び,それぞれを1辺とする 三角形を作る場合、何通りできるか. (S級30秒, A級1分, B級2分, C級3分)

★ 三角形の必要条件 三角形の 2 辺の長さの和は、他の 1 辺の長さより大きい.

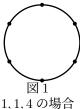
効率のいい調べ方としては、短い2辺の和が、一番長い辺より大きいなら三角形ができる.

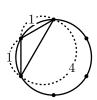

図 1 2,3,4 の場合

2+3>4 だから三角形ができる.

2	3	4	0	図1参照
2	3	5	\times	図2参照
2	4	5	0	2+4 > 5
3	4	5	0	3+4>5

図 2 2,3,5 の場合




2+3>5 ではないから三角形ができない.

3 通り

円周を6点が等分する.これら6点から3点選んで三角形を作る. 合同なものは1種類として考える場合, 三角形は何種類できるか.

 $(S \times 30 \times A \times 1)$, $(S \times 30 \times A \times 1)$, $(S \times 30 \times A \times 1)$

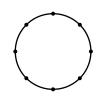
1	1	4	図1参照
1	2	3	図2参照
2	2	2	図3参照

図 2 1,2,3 の場合

3 種類

図 3 2,2,2 の場合

- 5本の竹ひごがあって、長さは短い順に2cm、3cm、4cm、5cm、6cm である。5本の竹ひごから3本選び、それぞれを1辺 とする三角形を作る場合, 何通りできるか. (S 級 45 秒, A 級 1 分 20 秒, B 級 2 分 40 秒, C 級 4 分)
 - ★ 三角形の必要条件 三角形の 2 辺の長さの和は、他の 1 辺の長さより大きい.


効率のいい調べ方としては、短い2辺の和が、一番長い辺より大きいなら三角形ができる.

2	3	4	0	2+3 > 4
2	3	5	×	$2+3 \le 5$
2	3	6	×	$2+3 \le 6$
2	4	5	0	2+4>5
2	4	6	×	$2+4 \le 6$
2	5	6	0	2+5 > 6
3	4	5	0	3+4>5
3	4	6	0	3+4 > 6
3	5	6	0	3+5 > 6
4	5	6	0	4+5>6

7通り

円周を8点が等分する.これら8点から3点選んで三角形を作る. 合同なものは1種類として考える場合, 三角形は何種類できるか.

(S 級 50 秒, A 級 1 分 30 秒, B 級 3 分, C 級 4 分)

1	1	6	図1参照
1	2	5	図2参照
1	3	4	図3参照
2	2	4	図4参照
2	3	3	図5参照

5 種類

図 4

2,2,4 の場合

図 1 1,1,6 の場合

図 2

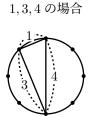


図 3

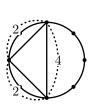


図 5